
Engineering Applications of Artificial Intelligence 81 (2019) 169–179

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Improving the effectiveness of keyword search in databases using query
logs✩

Ziqiang Yu a, Ajith Abraham b, Xiaohui Yu c, Yang Liu d, Jing Zhou e, Kun Ma a,∗

a Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
b Machine Intelligence Research Labs, MIR, Auburn, USA
c York University, Toronto, Ontario M3J1P3, Canada
d Wilfrid Laurier University, Waterloo, Ontario N2L3C5, Canada
e Beijing Guoshuang Technology Co., Ltd., China

A R T I C L E I N F O

Keywords:
Keyword search
Top-k
Query log
Relational database

A B S T R A C T

Using query logs to enhance user experience has been extensively studied in the Web IR literature. However, in the
area of keyword search on structured data (relational databases in particular), most existing works have focused
on improving search result quality via designing better scoring functions, without giving explicit consideration to
query logs. However, query logs can reflect the user preferences, so our work taps into the wealth of information
contained in query logs and aims to enhance the search effectiveness by explicitly taking into account the log
information when ranking the query results. Different from existing approaches only relying on a schema graph
or a data graph, our work designs a comprehensive solution based on both the schema graph and the data
graph for discovering top-k results with two stages. First, we identify top-k candidate networks with a query-
log-aware ranking strategy by employing the largest frequent subtrees mined from query logs. Since a candidate
network usually corresponds to multiple joined tuple trees, we further rank these joined tuple trees with the
PageRank principle based on the data graph in the second stage. Finally, user studies on a real dataset validate
the effectiveness of the proposed ranking strategy.

1. Introduction

The success of keyword queries as a common way of web search
and exploration has spurred much interest in the research commu-
nity in supporting effective and efficient keyword search in relational
databases. It allows information retrieval (IR) from databases by simply
giving a set of keywords, without requiring users to know either query
languages (such as SQL) or the database schema. A large body of
literature has appeared in this area, which can be broadly classified
into two categories: the schema graph based approach (e.g., DISCOVER
(Hristidis and Papakonstantinou, 2002), DISCOVER-II (Hristidis et al.,
2003), SPARK (Luo et al., 2007), SPARK2 (Luo et al., 2011), DBXplor
(Agrawal et al., 2002), and QUEST (Bergamaschi et al., 2016)) and the
data graph based approach (e.g., BANKS (Hulgeri and Nakhe, 2002),
BANKS-II (Kacholia et al., 2005), PACOKS (Lin et al., 2016), CI-Rank
(Yu and Shi, 2012), Blinks (He et al., 2007), and DSize-l and PSize-l OS
(Fakas et al., 2015)).

Despite the recent advances in keyword search over databases, there
still exist two major issues to be addressed. The first one is few

✩ No author associated with this paper has disclosed any potential or pertinent conflicts which may be perceived to have impending conflict with this work. For
full disclosure statements refer to https://doi.org/10.1016/j.engappai.2019.01.017.
∗ Corresponding author.

E-mail address: ise_mak@ujn.edu.cn (K. Ma).

work explicitly incorporates the query feedback into the ranking
of query results. Here, we take schema graph based approaches as
an example. This type of approaches (Hristidis and Papakonstantinou,
2002; Hristidis et al., 2003; Agrawal et al., 2002; Bergamaschi et al.,
2016) execute the querying process by two steps: candidate network
(CN) generation and candidate network (CN) evaluation. For instance,
DISCOVER first traverses the tuple set graph expanded from the schema
graph to generate all CNs, and then creates a execution plan to evaluate
all generated CNs. To enhance the search efficiency, DISCOVER-II
(Hristidis et al., 2003) introduces some pruning conditions to avoid
generating unnecessary tuple trees and designs a greedy algorithm to
produce a near-optimal execution plan. More studies have been done
to further improve the search efficiency and the effectiveness of results
such as Luo et al. (2007, 2011), Liu et al. (2006) and Yang et al. (2014).
However, these works on the effectiveness issue primarily focus on
returning results with basic semantics, while user preferences are not
explicitly considered during the whole process. This is also true for most
data graph based approaches. In contrast, a user is more likely to find the

https://doi.org/10.1016/j.engappai.2019.01.017
Received 24 June 2018; Received in revised form 12 September 2018; Accepted 25 January 2019
Available online 5 March 2019
0952-1976/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2019.01.017
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2019.01.017&domain=pdf
https://doi.org/10.1016/j.engappai.2019.01.017
mailto:ise_mak@ujn.edu.cn
https://doi.org/10.1016/j.engappai.2019.01.017

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

answer he/she is interested in if his/her preference (captured through
search history, etc.) is taken into account when ranking the results.

As an example, consider the following scenario. Company XYZ is
a wholesale supplier with geographically distributed warehouses, each
of which serves several sales districts. A database 𝐷 is used to manage
the information of the company’s products and customers. 𝐷 consists of
seven tables with the following schema: warehouse (warehouseID, . . .),
district (districtID, warehouseID, . . .), customer (customerID, districtID,
warehouseID, . . .), item (itemID, . . .), stock (itemID, warehouseID, . . .), or-
der (orderID, districtID, warehouseID, customerID, . . .), orderline (orderID,
number, itemID, . . .).

We assume that the warehouses are named 𝑊1,𝑊2,… ,𝑊𝑚 and items
𝐼1, 𝐼2,… , 𝐼𝑛. Intuitively, users of 𝐷 from different departments of the
company would want different information from the database even
when they issue the same query. For example, when an employee
from the sales department issues a query ‘‘𝑊𝑖, 𝐼𝑗 ’’, she is likely to
prefer retrieving information regarding the sales of 𝐼𝑗 in warehouse 𝑊𝑖.
Therefore, search results corresponding to the join 𝑖𝑡𝑒𝑚 ⋈ 𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑛𝑒 ⋈
𝑜𝑟𝑑𝑒𝑟 ⋈ 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 should be promoted towards the top of the ranked
list of results. This preference can be naturally reflected in the query
log through past queries issued by her or her colleagues in the sales
department. In contrast, an employee from the distribution department,
who often checks stock and distributes goods from warehouses to stores,
may prefer the stock information of item 𝐼𝑗 in the warehouse 𝑊𝑖 (𝑖𝑡𝑒𝑚 ⋈
𝑠𝑡𝑜𝑐𝑘 ⋈ 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒) for the same search. Again, this preference can be
reflected in the log of past queries.

Since users preferences are significant to the ranking of query
results, some works draw into user feedbacks when integrating keyword
search based data (Bergamaschi et al., 2016; Gao et al., 2011; Yagci
et al., 2017; Peng et al., 2009; Qiao et al., 2018). Bergamaschi et al.
(2016) study the expression of keyword search queries with terms of
metadata structures of databases to make the queries better reflect user
preferences. Gao et al. Gao et al. (2011) also employ query logs for
keyword search, but the query logs in their work are only used to help
improve the effectiveness of keyword query cleaning. Peng et al. Peng
et al. (2009) explore how to better reformulate initial queries to retrieve
more relevant query results in relational databases by applying user
feedbacks. However, these works just focus on enhancing the quality
of keyword search queries but not exploring a novel ranking strategy
based on the user preferences mined from query logs. Our work (Zhou
et al., 2015) adequately incorporates the user feedback into the ranking
of CNs, but it lacks of a strategy about identifying the top-k JTT s for
users.

Another problem faced with existing works is the gap between
schema graph based and data graph based approaches. Schema
graph based approaches usually aim to effectively search and rank
the CNs, but rarely pay attention to further improve the performance
of ranking joined tuple trees (JTT s) based on the data graph. For
instance, DISCOVER-II (Hristidis et al., 2003) tries to rank the keyword
search results by incorporating IR techniques, but it is only concerned
about accelerating the generation of top-k JTT s based on selected CNs
rather than designing a smarter score function to improve the ranking
effectiveness of JTT s. As to the data graph based approaches (Hulgeri
and Nakhe, 2002; Kacholia et al., 2005; Yu and Shi, 2012; He et al.,
2007; Fakas et al., 2015), they usually discover and rank the JTT s based
on the data graph straightly, so they usually consume much more time
than the schema graph based approaches. An empirical performance
evaluation (Coffman and Weaver, 2014) has shown that DISCOVER
and DISCOVER-II are much faster than BANKS (Hulgeri and Nakhe,
2002) when they identify the same set of results on IMDB, MONDIAL,
and Wikipedia datasets. Therefore, we believe that it will be useful to
filter the irrelevant results for the data graph based approached by first
identifying the CNs better meeting the user preferences, but few work
attempt this way.

For the sake of above challenges, we introduce a two-cascading
search approach employing user query logs to settle the keyword search

query with two stages. The first stage is to generate and rank CNs
incorporating the user preferences mined from query logs, because the
query logs record the queries along with the results chosen by users
for each query, which adequately reflect user feedbacks. In particular,
we first mine the frequent patterns from the query log of every user.
For a given query, we then score all CNs obtained by a standard CN -
generating algorithm based on the schema graph, such as that from
DISCOVER, by a new scoring function that combines the score based on
the user query log and the score on the CN size through normalization
and weighting. Finally, we choose top-k CNs better conforming to user
preferences.

In the second stage, we investigate how to rank JTT s generated by
the top-k CNs with the PageRank principle. We first construct a data
graph corresponding to the database as Blinks (He et al., 2007) and
view it as a web page graph, where each node is regarded as a web
page. Just like calculating PageRank values for web pages, every node
in the data graph is also assigned a PageRank value. We next design a
score function that can evaluate the generated JTT s by combining the
PageRank values of their nodes and their sizes, and then introduce a
filter-and-pruning strategy to identify top-k JTT s.

So far, our work not only incorporates user preferences into CN
generation based on the schema graph to narrow down the search space,
but also further enhances the ranking effectiveness of JTT s with the
PageRank principle based on the data graph. Our main contributions
can be summarized as follows.

• We propose a two-cascading ranking approach that can absorb
the advantages of schema graph based and data graph based ap-
proaches to improve the ranking effectiveness from two different
aspects.

• We incorporate the user feedback into the sorting of CNs with
the help of frequent patterns mined from user query logs, which
not only enhances the ranking efficiency of CNs but also narrows
down the search scope for the next stage.

• We prove the scoring process of CNs is NP-hard, and provide a
dynamic programming algorithm to calculate the maximum score
for a given CN.

• We devise a score function with the PageRank principle over a data
graph to further sort the JTT s based on the selected top-k CNs.

• Extensive experiments and user studies are conducted to evaluate
the proposed ranking strategy, and confirm its effectiveness.

The rest of the paper is organized as follows. Section 2 defines
the vital conceptions and data structures used in this work. Section 3
presents the strategy of ranking CNs based on query logs. Section 4
describes the method with the PageRank principle to further rank JTT s
based on the top-k CNs. Experimental results are presented in Section 5.
Section 6 concludes this paper and discusses possible directions for
future work.

2. Preliminaries

We consider a relational database with 𝑛 relations 𝑅1,. . . , 𝑅𝑛. Each
relation 𝑅𝑖 has 𝑚𝑖 attributes 𝑎𝑖1,. . . , 𝑎

𝑖
𝑚𝑖

.

Definition 1 (Labeled Directed Graph). Given a relational database 𝐷,
we define the schema graph of 𝐷 as a Labeled Directed Graph (LDG)
𝐺 = (𝑉 ,𝐸). Each node 𝑣 ∈ 𝑉 represents the corresponding relation in
𝐷, and each edge 𝑒 ≡ 𝑣𝑖 → 𝑣𝑗 (𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , 𝑒 ∈ 𝐸) corresponds to a
primary-key-foreign-key relationship between the relations represented
by 𝑣𝑖 and 𝑣𝑗 . We assign unique ids (i.e., label) to all nodes and edges
respectively.

Fig. 1 depicts a sample of five tables from the DBLP biography
database (Zeng et al., 2012). The tables Paper and Author contain
information on papers and researchers respectively; table Conference
contains conference information. Table PaperCitation stores the citation

170

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

Fig. 1. DBLP database sample.

Fig. 2. The LDG of DBLP database.

Fig. 3. Labeled free tree form of a CN .

relationships between papers; and table Write records the m : n relation-
ships between authors and papers. The LDG of the sample DBLP database
from Fig. 1 is shown in Fig. 2.

Given a query 𝑄 = {𝑘1,. . . , 𝑘𝑚}, where 𝑘𝑖 is a keyword, we can
obtain a set of basic tuple sets 𝑅

𝑘𝑗
𝑖 (𝑖 = 1,… , 𝑛, and 𝑗 = 1,… , 𝑚). The

basic tuple set 𝑅𝑘𝑗
𝑖 consists of all tuples of relation 𝑅𝑖 that contain the

keyword 𝑘𝑗 . Then the basic tuple sets are processed to produce tuple
sets 𝑅𝐾

𝑗 for the non-empty subset K of Q. 𝑅𝐾
𝑖 , a non-empty tuple set

that contains the tuples of 𝑅𝑖 that contain all keywords of K and no
other keywords, is defined as 𝑅𝐾

𝑖 = {𝑡|𝑡 ∈ 𝑅𝑖 ∧ ∀𝑘 ∈ 𝐾, 𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑘 ∧
∀𝑘′ ∈ 𝑄 − 𝐾, 𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑘′}. For example, 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 is the set
{P1,P2}, and 𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴 is {P4}. The database relations that appear in
the schema graph is free tuple set denoted as 𝑅{} which means that the
relation R does not have tuples that contain a keyword. The non-empty
tuple sets combine with the schema graph of the database by adding
corresponding edges to form the tuple set graph 𝐺𝑇𝑆 .

Definition 2 (Candidate Network). A candidate network (CN) is a join
network of tuple sets formed by traversing 𝐺𝑇𝑆 in a breadth-first mode.

A CN is a portion of 𝐺𝑇𝑆 and can be considered as labeled free
tree which belongs to the family of free trees-the connected, acyclic
and undirected graphs. Fig. 3 illustrates the labeled free tree of one
CN for the query ‘‘Markov,LDA’’, which represents the join network
𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴.

Definition 3 (Joined Tuple Tree). Given the tuple set graph 𝐺𝑇𝑆 for
a database, a joined tuple tree (JTT) is a tree of tuples, where each
edge (𝑡𝑖, 𝑡𝑗) satisfies the following properties: (1) 𝑡𝑖 ∈ 𝑅𝑖, 𝑡𝑗 ∈ 𝑅𝑗 , (2)
𝑡𝑖 ⋈ 𝑡𝑗 ∈ 𝑅𝑖 ⋈ 𝑅𝑗 , (3) 𝑅𝑖 and 𝑅𝑗 belong to the same CN.

Corresponding to the CN 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴,
𝑃2

𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ (𝑃2, 𝑃4) ⋈ 𝑃4
𝐿𝐷𝐴 is a joined tuple tree.

Definition 4 (Query Log). A query log 𝐿 is a set of entries. Each user
has his own query log. For a specific user, each entry in his/her user
log records the candidate network (in the form of labeled free tree) that
the user chose to visit when all the candidate networks were presented
to him/her in answering a given query. In short, 𝐿 contains the chosen
results of a user for one or more queries.

Definition 5 (F-subtree). For a specific user (or a group of similar users)
𝑢, his/her entries in the query log form a set 𝐿𝑢 where each recorded
CN 𝐜 ∈ 𝐿𝑢 is a labeled free tree. For a given pattern 𝑇𝑖 (a free tree), we
say that 𝑇𝑖 occurs in a logged CN 𝐜 or 𝐜 supports 𝑇𝑖 if 𝑇𝑖 is isomorphic
to a subtree of 𝐜. The support of the pattern 𝑇𝑖 is the number of CNs
in 𝐿𝑢 that support 𝑇𝑖. The pattern 𝑇𝑖 is said to be a frequent subtree
(F-subtree) if its support, 𝑠𝑢𝑝(𝑇𝑖), is no less than a predefined minimum
support (minsup).

Definition 6 (LF-subtree). For a F-subtree 𝑇𝑖, if there does not exist a
pattern 𝑇𝑖′ such that 𝑇𝑖′ is a F-subtree and 𝑇𝑖 is covered by 𝑇𝑖′, then 𝑇𝑖
is a LF-subtree (largest frequent subtree). The problem of mining LF-
subtrees from query logs is to compute, for a given user 𝑢 and his/her log
𝐿𝑢, the set (𝐿𝑢) = {𝑇𝑖|𝑠𝑢𝑝(𝑇𝑖) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝}, where 𝑇𝑖 cannot be covered
by any other pattern in (𝐿𝑢).

The essence of finding LF-subtrees from a query log is the problem of
mining interesting patterns from a dataset, which is still a hot research
topic in recent years (Alavi and Hashemi, 2015; Chi et al., 2003; Gan
et al., 2017; Duong et al., 2018; Lin et al., 2018). Here, we employ
the algorithm FreeTreeMiner described in Chi et al. (2003) to calculate
(𝐿𝑢).

3. Ranking CNs with query logs

When producing the set of CNs, many works simply rank the CNs
by their sizes. For instance, DISCOVER adopts the following formula for
scoring a CN 𝐜:

𝑆𝑐𝑜𝑟𝑒𝑆𝐼𝑍𝐸 (𝐜) = 1∕𝑆𝑖𝑧𝑒(𝐜) (1)

By Eq. (1), smaller CNs are ranked before larger ones, and ties are
broken arbitrarily. Users get query results ranked by the sizes of their
corresponding CNs, which could be very different from the users’ real
needs. As an example, consider the following case. Suppose that a user

171

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

issues a query ‘‘Markov, LDA’’. The CNs (i) 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ 𝐶𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ⋈
𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴 and (ii) 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ 𝑊 𝑟𝑖𝑡𝑒 ⋈ 𝐴𝑢𝑡ℎ𝑜𝑟 ⋈ 𝑊 𝑟𝑖𝑡𝑒 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴

are included in the results of the CN generation step. According to
Eq. (1), CN (i) is ranked higher than (ii) as it has less joins and hence
a smaller size. But if the query log contains entries related to this user’s
past queries, we can take them into consideration when ranking the CNs.
For example, we consider an extreme case where there is no pattern
Paper ⋈ Conference and the support of the pattern Author ⋈ Write ⋈
Paper is very large. Intuitively, CN (ii) should be ranked higher than (i)
as the preference of the user can be clearly inferred from his/her search
history.

The problem we study in this section, is how to adapt to user
preferences through query logs. This can be further boiled down to the
problem of ranking the generated CNs using information mined from
query logs.

3.1. A naive method based on query logs

A straightforward method to incorporate the query log information
is to assign, for each user, a degree of preference (e.g., 𝑝 ∈ [0, 1]) for each
table in the database based on frequency of that table appearing in the
log. The score of a generated CN for a given query can be computed by a
linear combination of the preference degree of each table involved and
the size of the CN. However, this does not work in some cases as the score
may be dominated by a minority (sometimes even one) of the tables in
the CN. For example, for the query ‘‘Markov, LDA", we suppose there
exist two corresponding candidate networks (i) 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ 𝑊 𝑟𝑖𝑡𝑒 ⋈
𝐴𝑢𝑡ℎ𝑜𝑟 ⋈ 𝑊 𝑟𝑖𝑡𝑒 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴 and (ii) 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ⋈
𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴. If the degree of preference for 𝐴𝑢𝑡ℎ𝑜𝑟 is much higher than
other tables for that user, then CN (i) may be ranked higher than CN
(ii). However, although the user has a strong preference for 𝐴𝑢𝑡ℎ𝑜𝑟, it is
very likely that for this particular query the user would prefer a pattern
in which one paper cites another. In this example, the high preference
degree of a single table 𝐴𝑢𝑡ℎ𝑜𝑟 has dominated the scoring of the CN.
Someone perhaps doubts that since the size of CN (i) is greater than
that of CN (ii), so the ranking score of CN (i) may be smaller than that
of CN (ii). But in reality, we cannot guarantee the table with the high
frequency always locates in a candidate network with larger size.

The second negative case caused by the dominated tables is that,
the scores of different candidate networks containing dominated tables
will be convergent at the same score, making their ranking order be
difficult to be identified. This is because the dominated tables are also
vital relations in a database, and they are much more frequently adopted
by users, just like the table Paper in DBLP. To stick with the above
example, if Paper owns a much higher preference degree than others,
it will dominate the scores of CN (i) and CN (ii) to make these two
scores be almost identical.

The last but not least reason is that in some cases, the join of
frequent tables may not be frequent. For example, it is possible that
two tables, say 𝑃𝑎𝑝𝑒𝑟 and 𝐴𝑢𝑡ℎ𝑜𝑟, are both of high frequency, but the
join 𝑃𝑎𝑝𝑒𝑟 ⋈ 𝑊 𝑟𝑖𝑡𝑒 ⋈ 𝐴𝑢𝑡ℎ𝑜𝑟 may be rare in this log. In this case, any
CN with this join as a component should not be ranked high despite the
high frequency of 𝑃𝑎𝑝𝑒𝑟 and 𝐴𝑢𝑡ℎ𝑜𝑟. Intuitively, instead of considering
the frequency of single tables, we should focus more on the frequency of
those ‘‘join structures". This leads us to develop the methods described
in the sequel.

3.2. Ranking CNs with LF-subtrees

In this section, we discuss how to rank CNs with LF-subtrees mined
from query logs. We first design a sophisticated score function to
rank CNs incorporating the user feedback, and further explain why
the calculation of the maximum score of a CN is a NP-hard problem.
To address it, we then propose a dynamic programming algorithm to
identify the best proper partition for a CN, which is the essential issue
for computing the maximum score of the CN.

3.2.1. Score function for ranking CNs
Since the LF-subtree is frequently adopted by users, we naturally

view that the CNs including one or more LF-subtrees will better satisfy
user preferences than the ones without LF-subtrees. Inspired by this,
we deem that the calculation of scores of CNs must incorporate their
covered LF-subtrees. Hence, we seek to augment the scoring function
in Eq. (1) with the LF-subtrees mined from query logs. Let (𝐿𝑢) be the
set of LF-subtrees mined from query log 𝐿𝑢 for a given user (or group of
users) 𝑢. For a CN 𝐜, we use FS(𝐜) to denote the set of LF-subtrees from
(𝐿𝑢) such that any LF-subtree 𝑇𝑖 is covered by 𝐜, i.e., 𝐹𝑆(𝐜) = {𝑇𝑖|𝑇𝑖 ⋐
𝐜 ∧𝑇𝑖 ∈ (𝐿𝑢)}. The set of edges in 𝐜 not covered by FS(𝐜), together with
their corresponding vertices, constitute another set denoted by NFS(𝐜).
Naturally, NFS(𝐜) and FS(𝐜) have no overlapping edge.

As to the CN c, we define its a proper partition 𝑃𝐜 as a complete non-
overlapping cover of 𝐜 by a combination of elements from FS(𝐜) and
NFS(𝐜) such that

- There is no overlapping edge between any pair of elements; and
- The union of the edges in all of the elements in the combination

is equal to the set of edges in 𝐜.

Obviously, each edge of 𝐜 is contained in exactly one element of the
combination. Particularly, if the partition 𝑃𝑐 has more than one LF-
subtree, then any two different LF-subtrees in 𝑃𝑐 cannot possess the same
edge. The score of the proper partition 𝑃𝐜 is assigned as follows.

𝑠𝑐𝑜𝑟𝑒𝑃𝐴𝑅(𝑃𝐜) =
∑

𝑇𝑖∈𝐿𝐹𝑆
𝑠𝑐𝑜𝑟𝑒(𝑇𝑖), (2)

𝑠𝑐𝑜𝑟𝑒(𝑇𝑖) =
(

𝑆𝑖𝑧𝑒(𝑇𝑖)∕𝑆𝑖𝑧𝑒(𝐜)
)𝑡
⋅𝑁(𝑠𝑢𝑝(𝑇𝑖)) (3)

where LFS denotes the set of frequent LF-subtrees used in the partition
and 𝑠𝑢𝑝(𝑇𝑖) is the support of 𝑇𝑖 (𝑇𝑖 ∈ LFS). The configurable parameter
t (𝑡 ≥ 1) is used to control the degree of preference for larger frequent
structures, and 𝑁(⋅) is a normalization function to be described later.
Notice that elements in NFS(𝐜) do not contribute the score of the
partition.

In Eq. (3), normalization is applied to the support. The support of
a frequent pattern mined from the query log ranges from minsup to an
unknown large number. If the value of 𝑠𝑢𝑝(𝑇𝑖) is too big, the score of
the CN that contains the subtree 𝑇𝑖 will become unreasonably large.
Therefore, normalization must be done to limit the influence of the sup-
port value. In particular, when the support is extremely large, its effect
should be dampened even more. Based on the above consideration, we
use a sigmoid function as a starting point for normalizing the support
values, which takes the form of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1∕(1 + 𝑒−𝛼𝑥), where the
weight parameter 𝛼 controls the linearity of the curve. In our case, the
range of support is [minsup, +∞). As minsup is greater than zero, the
range of the sigmoid function is (0.5,1). However, the range of Eq. (1)
is [0,1]. So, we have to scale the range of the sigmoid function to the
range of (0,1) by the transformation 𝑁(𝑥) = 2 ⋅ (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) − 0.5).

Note that there may exist many proper partitions for a candidate
network. Let 𝐜 denote the set of all proper partitions of 𝐜, each of which
has a corresponding score computed by Eq. (2). The largest such score
is used as the query log score, as indicated in Eq. (4). The rule comes
from the intuition that we always want to get a partition in which the
LF-subtrees have both larger support and larger size. But in fact, smaller
LF-subtrees in 𝐜 have larger supports. Thus, a trade-off is needed. So, a
candidate network is assigned the largest combination score as the log
score.

𝑠𝑐𝑜𝑟𝑒𝐿𝑂𝐺(𝐜) = 𝑚𝑎𝑥{𝑠𝑐𝑜𝑟𝑒𝑃𝐴𝑅(𝑃𝐜)|𝑃𝐜 ∈ 𝐜} (4)

Finally, we combine the original size-based score and the query log score
by weighting as in Eq. (5), where 𝜆 is the weight of the original score
and controls the relative importance between the two parts. If 𝜆 = 1,
then the new scoring function is the same as the one used in DISCOVER.

𝑆𝑐𝑜𝑟𝑒(𝐜) = 𝜆 ⋅ 𝑆𝑐𝑜𝑟𝑒𝑆𝐼𝑍𝐸 (𝐜) + (1 − 𝜆) ⋅ 𝑆𝑐𝑜𝑟𝑒𝐿𝑂𝐺(𝐜) (5)

172

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

To illustrate the advantage of this new scoring function, we also consider
the example given at the beginning of Section 3. For the query {‘‘Markov,
LDA’’}, two example CNs (i) 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ 𝐶𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴

and (ii) 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈ 𝑊 𝑟𝑖𝑡𝑒 ⋈ 𝐴𝑢𝑡ℎ𝑜𝑟 ⋈ 𝑊 𝑟𝑖𝑡𝑒 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴 are
assigned with an score respectively by our ranking functions. As (𝐿𝑢)
has no the pattern Paper ⋈ Conference while the pattern Author ⋈ Write ⋈
Paper has a large support, 𝑆(𝑖) < 𝑆(𝑖𝑖). Apparently, by incorporating the
query log, the generated candidate networks can be ordered emerging
user preferences.

So far, we can compute the largest score for CN c with Eq. (5) if its
log score has been identified. However, since c probably corresponds
to numerous proper partitions, so it turns to be a NP-hard problem to
compute the maximum combination score (i.e., log score) corresponding
to the best proper partition of c, and which will be shown in the next
section.

3.2.2. Complexity of identifying the best proper partition
We first introduce the notations that will be used. Let 𝛹 be the

set of all edges of CN 𝐜; S = FS(𝐜)∪ NFS(𝐜). Then a LF-subtree can be
represented with a subset of 𝛹 .

Definition 7 (Best Proper Partition Problem). With 𝛹 and S as input, the
best proper partition problem is to find a set ∗ ⊆ S such that each
element of 𝛹 appears in only one element of ∗ and ∗ maximizes
𝑠𝑐𝑜𝑟𝑒(∗) =

∑

𝑆∈∗ 𝑠𝑐𝑜𝑟𝑒(𝑆).

In the above definition, each element S in ∗ is indeed a LF-subtree
covered by c because the edges in NFS(𝐜) do not contribute to the query
log score of c. Hence, our problem can be considered an optimization
problem formulated as follows.

- Instance: Given a set of elements 𝛹 , and the set of LF-subtrees
FS(𝐜) = {𝑇1, 𝑇2,… , 𝑇𝑛}, where 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛) ⊆ 𝛹 and has a
corresponding score 𝑤𝑖.

- Question: Find a set ∗ ⊆ FS(𝐜), which ensures that each element
of 𝛹 appears in one and only one element of ∗ and ∑

𝑇𝑖∈∗ 𝑤𝑖 is
maximized.

Correspondingly, the decision version of the best proper partition
problem, can be formulated as follows.

- Instance: Given a set of elements 𝛹 , a set of subsets of 𝛹 , FS(𝐜) =
{𝑇1, 𝑇2,… , 𝑇𝑛}, and a constant B, where 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛) ⊆ 𝛹 and has
a corresponding score 𝑤𝑖.

- Question: Is there a set ∗ ⊆ S such that each element of 𝛹 just in
one and only one element of ∗ and ∑

𝑇𝑖∈∗ 𝑤𝑖 ⩾ 𝐵?

Theorem 1. The best proper partition problem is NP-hard.

It is sufficient to prove best proper partition decision problem is
NP-Complete. We can apply the restriction technique which shows the
NP-Completeness of an NP problem by stating that a special case of
the problem is NP-Complete. By limiting 𝐵 = 𝑚𝑖𝑛{𝑤𝑖|𝑇𝑖 ⊆ ∗}, the
decision problem can be restricted to the exact cover problem, a problem
known to be NP-Complete. Then, the decision problem is proved to be
NP-Complete. Hence, the best proper partition problem is NP-hard.

3.3. Identification of the best proper partition

We now discuss the discovery of the best proper partition by dynamic
programming. Assuming that the elements in FS(𝐜) are numbered, we
define a set of indicator variables 𝑥𝑖 for a given set  ⊆ S such that
𝑥𝑖 = 1 if the 𝑖th element in FS(𝐜) appears in  , and 𝑥𝑖 = 0 otherwise.
Then an indicator vector (𝑥1, 𝑥2,… , 𝑥

|𝐹𝑆(𝐜)|) can be formed.
Our problem can be considered as maximizing the following function

with respect to 

𝐹 () =
|𝐹𝑆(𝐜)|
∑

𝑖=1
𝑥𝑖 ⋅ 𝑠𝑐𝑜𝑟𝑒(𝑇𝑖)

subject to the constraints: (i) 𝑇𝑖
⋂

𝑇𝑗 = ∅, if 𝑥𝑖 = 1, 𝑥𝑗 = 1, 1 ≤ 𝑖, 𝑗 ≤
|𝐹𝑆(𝐜)|, and 𝑖 ≠ 𝑗 (ii) ⋃

|𝐹𝑆(𝐜)|
𝑖=1 𝑥𝑖𝑇𝑖 ⊆ 𝛹 and (iii) 𝑥𝑖 ∈ {0, 1}, where

𝑠𝑐𝑜𝑟𝑒(𝑇𝑖) is calculated by Eq. (3). The constraint (i) ensures that for a
partition no pair of LF-subtrees share the same edges, and (ii) makes a
partition consisting of multiple LF-subtrees is still a subset of 𝛹 .

3.3.1. SPP Algorithm
According to the above rule, we design SPP, an algorithm based

on dynamic programming, to identify the best proper partition of c. This
algorithm includes following two phases.

Phase 1 Constructing RLF index to manage all LF-subtrees. We
first build an Relevant LF-subtree (RLF) index to manage (𝐿𝑢), the set
of all LF-subtrees mined from the query log of the user 𝑢. For any LF-
subtree 𝑇𝑖 in RLF, it has a relevant LF-subtree list 𝐿𝑇𝑖 , which records
all LF-subtrees that at least have one common edge with 𝑇𝑖. For every
element in RLF, we define a Bound Score (BScore for short) as Eq. (6).
Based on this equation, we can deduce that for any two elements 𝑇𝑖 and
𝑇𝑗 , if 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑖) is greater than 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑗), then 𝑠𝑐𝑜𝑟𝑒(𝑇𝑖) > 𝑠𝑐𝑜𝑟𝑒(𝑇𝑗),
where 𝑠𝑐𝑜𝑟𝑒(⋅) is defined as Eq. (3). This rule is proved in Theorem 2. The
reason why we use 𝐵𝑆𝑐𝑜𝑟𝑒(⋅) instead of 𝑠𝑐𝑜𝑟𝑒(⋅) is that the calculation
of 𝑠𝑐𝑜𝑟𝑒(⋅) always involves the size of a specified CN, while the BScore
of a LF-subtree is only associated with its size and frequency but has
no relationship with any CN, so the BScore of every LF-subtree can be
calculated beforehand in off-line. With the help of BScore, we unveil a
property that can promote the discovery of the best proper partition by
filtering the unavailable combinations. That is, for two LF-subtrees 𝑇𝑖
and 𝑇𝑗 , and a candidate partition 𝑃𝑐 of c to be expanded, if 𝑇𝑖 and 𝑇𝑗
both can be added into 𝑃𝑐 and 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑖) ≥ 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑗), putting 𝑇𝑖 into
𝑃𝑐 will make c have a greater combination score.

𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑖) = 𝑆𝑖𝑧𝑒(𝑇𝑖)𝑡 ⋅𝑁(𝑠𝑢𝑝(𝑇𝑖)) (6)

Theorem 2. For any two LF-subtrees 𝑇𝑖 and 𝑇𝑗 , if 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑖) ≥
𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑗), then 𝑠𝑐𝑜𝑟𝑒(𝑇𝑖) ≥ 𝑠𝑐𝑜𝑟𝑒(𝑇𝑗) for any candidate network.

Proof. Due to 𝑡 ≥ 1, we can infer that 𝑆𝑖𝑧𝑒(𝐜)𝑡 ≥ 1. Since 𝑆𝑖𝑧𝑒(𝑇𝑖)𝑡 ⋅
𝑁(𝑠𝑢𝑝(𝑇𝑖)) ≥ 𝑆𝑖𝑧𝑒(𝑇𝑗)𝑡 ⋅ 𝑁(𝑠𝑢𝑝(𝑇𝑗)), we can deduce that

(

𝑆𝑖𝑧𝑒(𝑇𝑖)∕𝜏
)𝑡

⋅
𝑁(𝑠𝑢𝑝(𝑇𝑖)) ≥

(

𝑆𝑖𝑧𝑒(𝑇𝑗)∕𝜏
)𝑡
⋅𝑁(𝑠𝑢𝑝(𝑇𝑗)), where 𝜏 is a positive constant. Set

𝜏 = 𝑆𝑖𝑧𝑒(𝐜), then
(

𝑆𝑖𝑧𝑒(𝑇𝑖)∕𝑆𝑖𝑧𝑒(𝐜)
)𝑡
⋅𝑁(𝑠𝑢𝑝(𝑇𝑖)) ≥

(

𝑆𝑖𝑧𝑒(𝑇𝑗)∕𝑆𝑖𝑧𝑒(𝐜)
)𝑡
⋅

𝑁(𝑠𝑢𝑝(𝑇𝑗)) must be established. □

We calculate the BScore of every LF-subtree in RLF and rank them
based on their BScores in a descending order, which will make the
elements with greater BScores be processed first. To save the space,
we represent the LF-subtree list of an element in RLF as a vector
(𝑥1, 𝑥2,… , 𝑥

|(𝐿𝑢)|), where 𝑥𝑖 = 1 means 𝑇𝑖 has at least one common
edge with this element; 𝑥𝑖 = 0 otherwise.

Phase 2 Identifying the best proper partition of c. For the CN
c, we first identify FS(𝐜), the set of LF-subtrees covered by c with the
LF-CN-M algorithm that will be presented in next section. After ranking
LF-subtrees in FS(𝐜) according to their BScores, we then can identify the
best proper partition of c with multiple rounds of scanning RLF. In the
first round, suppose 𝑃𝑏 is the proper partition to be determined and
let  = 𝐹𝑆(𝐜). At the beginning, we add 𝑇𝑓 , the first element of ,
into 𝑃𝑏 and visit RLF index to obtain 𝐿𝑇𝑓 , the relevant LF-subtree list
of 𝑇𝑓 . According to Definition 7, we infer that the LF-subtrees in 𝐿𝑇𝑓
cannot be included by 𝑃𝑏. So from the set , we remove the common
elements both in 𝐿𝑇𝑓 and  (i.e.,  =  − 𝐿𝑇𝑓), and delete 𝑇𝑓 from
. After this, we continue to choose the first LF-subtree 𝑇𝑓 ′ from 
and add it into 𝑃𝑏 to enlarge the 𝐵𝑆𝑐𝑜𝑟𝑒 of 𝑃𝑏 denoted by 𝐵𝑆(𝑃𝑏),
where 𝐵𝑆(𝑃𝑏) =

∑

𝑇𝑗∈𝑃𝑏 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑗). Similarly, we update the set  as
 =  − 𝐿𝑇𝑓 ′ and remove 𝑇𝑓 ′ from , and then dispose the surplus
elements in  to expand 𝑃𝑏 with the same way until  becomes empty.

In the ith round (𝑖 ≥ 2), we also set  = 𝐹𝑆(𝐜) and then remove
the former (𝑖-1) elements from . Like the first round, we process the
surplus elements of  to form a partition 𝑃𝑐 with 𝐵𝑆(𝑃𝑐) as large as

173

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

possible. If 𝐵𝑆(𝑃𝑐) > 𝐵𝑆(𝑃𝑏), we set 𝑃𝑏 = 𝑃𝑐 to label the current best
proper partition; otherwise, the partition 𝑃𝑐 can be safely discarded.

After |𝐹𝑆(𝐜)| rounds detection, we can verify that 𝑃𝑏 must be the best
proper partition because every possible combination of LF-subtrees in
FS(𝐜) has been detected. The pseudo-code of SPP is shown in Algorithm
1. Once 𝑃𝑏 is identified, we can deduce that 𝑆𝑐𝑜𝑟𝑒𝐿𝑂𝐺(𝐜) equals to
𝑆𝑐𝑜𝑟𝑒𝑃𝐴𝑅(𝑃𝑏) and then get 𝑆𝑐𝑜𝑟𝑒(𝐜) finally.

To enhance search efficiency, we introduce a pruning rule that can
timely terminate the search round that has no possibility to generate
a new partition with a greater score than that of the current proper
partition. Specifically, when processing the elements in  in the ith
round, we assume that the current partition being identified is 𝑃𝑐 . If
𝐵𝑆(𝑃𝑐) +

∑

𝑇𝑖∈ 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑖) ≤ 𝐵𝑆(𝑃𝑏), then this round detection can
be terminated because 𝐵𝑆(𝑃𝑐) cannot be greater than 𝐵𝑆(𝑃𝑏) even all
elements in  can be added into 𝑃𝑐 . To apply this pruning rule, we will
keep ∑

𝑇𝑖∈ 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑖), the summary of BScores of all elements in  in
every round, and update this value with the varying elements in .

Algorithm 1 SPP
Require:

(𝐿𝑢); CN c
Ensure:

Best proper partition 𝑃𝑏
1: FS(𝐜)=LF-CN-M ((𝐿𝑢), c);
2:  = 𝜙, 𝑃𝑏 = 𝜙, i=0;
3: while 𝑖 ≤ |𝐹𝑆(𝐜)| do
4: =FS(𝐜), 𝑃𝑐 = 𝜙;
5: if 𝑖 ≠ 0 then
6: Remove the former i element(s) from ;
7: end if
8: while  ≠ 𝜙 do
9: Put the first element 𝑇𝑓 of  into 𝑃𝑐 and remove 𝑇𝑓 from ;
10: Get 𝐿𝑇𝑓 from the RLF index, and  = -𝐿𝑇𝑓 ;
11: if BScore(𝑃𝑐)+∑

𝑇𝑖∈ 𝐵𝑆𝑐𝑜𝑟𝑒(𝑇𝑖) ≤ BScore(𝑃𝑏) then
12: break;
13: end if
14: end while
15: if BScore(𝑃𝑏)≤ BScore(𝑃𝑐) then
16: 𝑃𝑏 = 𝑃𝑐 ;
17: end if
18: end while
19: return 𝑃𝑏;

3.3.2. LF-CN-M algorithm
Now, we discuss LF-CN-M, the algorithm used in SPP to identify

FS(𝐜), the set of LF-subtrees covered by c. In this algorithm, we have
to compare every LF-subtree and c to detect whether the LF-subtree is
isomorphic to a subgraph of c, which is a NP-complete problem (Liu
and Qiao, 2014). To address the graph isomorphism issue, extensive
algorithms such as Ullmann, VF, VF2 and GNCCP (Liu and Qiao, 2014)
have been proposed to discover all isomorphism subgraphs from the
target graph. But in our study, we are only concerned about whether
a LF-subtree 𝑇𝑖 is isomorphic to a subgraph of c but not searching all
isomorphism subgraphs of c to 𝑇𝑖. Hence, we design a LF-subtree and
Candidate Network Matching (LF-CN-M) algorithm to accommodate the
characteristics of our research issue.

Before presenting LF-CN-M algorithm, there still exist two prepro-
cessing tasks. Firstly, we set an unique natural number as the identifier
of each relation in the database, to conveniently label the different
relations. Secondly, we will adjust the structures of every LF-subtree
and the candidate network. In particular, for a LF-subtree 𝑇𝑖, we select
the node (i.e., relation) with the smallest number as its new root and
then reorganize it to make the sibling nodes be in an ascending order
from left to right based on their identifiers. As to CN c, we make every
node of c as a root and transform c into a corresponding tree. Thus we
will need to keep multiple different trees corresponding to c. Fig. 4 gives
an example about illustrating the reorganization process.

Fig. 4. LF-subtree reorganization. Fig. 4(a) represents a LF-subtree and Fig. 4(b) is this
LF-subtree that has been reorganized.

After the preprocessing tasks, LF-CN-M can be applied to discover
all LF-subtrees being isomorphic to subgraphs of c and its pseudocode is
displayed in Algorithm 2. In LF-CN-M, we process every node of c in an
ascending order based on their identifiers. Suppose the sequential order
of nodes is {𝑛1, 𝑛2,… , 𝑛𝑠}, we first identify 𝑖, a set of LF-subtrees whose
roots have the same identifier with 𝑛𝑖 (1 ≤ 𝑖 ≤ 𝑠) and then compare every
LF-subtree in 𝑖 with the tree corresponding to cwith 𝑛𝑖 being root. This
comparison can be achieved by MatchGraph algorithm, and we provide
its pseudocode in Algorithm 3.

Suppose the tree with 𝑛𝑖 being root matching c is 𝑇𝑐 𝑖, then we present
how to compare 𝑇𝑐 𝑖 with a LF-subtree 𝑇𝑗 in 𝑖 using MatchGraph. We
set the root of 𝑇𝑗 as 𝑛𝑟 and detect whether 𝑛𝑖 and 𝑛𝑟 satisfy two following
conditions: (1) the degree of 𝑛𝑟 must be not greater than that of 𝑛𝑖; (2)
the children of 𝑛𝑟 must be a subset of the children of 𝑛𝑖. If 𝑛𝑖 and 𝑛𝑟
do not meet these two conditions, then 𝑇𝑗 is not covered by c and the
detection can be terminated. Otherwise, we say 𝑛𝑖 and 𝑛𝑟 are matched
and then continue to compare their children until all nodes of 𝑇𝑗 have
been scanned. If all nodes of 𝑇𝑗 could be traversed, which indicates that
𝑇𝑗 is covered by c; otherwise, 𝑇𝑗 is not a subgraph of c. In this process,
the dominated task is extensive comparisons of two children sets for two
different nodes, but this can be accelerated by the preprocessing work.
This is because we have reorganized LF-subtrees and c, making the LF-
subtree to be compared has the same root with the tree of c and the
children of any node in these trees are also ordered, which can greatly
cut down the unnecessary comparisons.

Once all LF-subtrees in 𝑖 have been compared with c, LF-CN-M
will continue the next round detection, that is, comparing c to the LF-
subtrees in (𝑖+1). Like this way, FS(𝐜) can be identified after comparing
c with all LF-subtrees in (𝐿𝑢).

Algorithm 2 LF-CN-M
Require:

CN c, (𝐿𝑢)
Ensure:

FS(𝐜)
1: Initialize two sets  and  respectively;
2: Rank the nodes in c based on their identifiers in an ascending order;
3: for each node 𝑛𝑖 ∈ c do
4: Find the LF-subtrees with roots being 𝑛𝑖 and put them into the set  ;
5: for each LF-subtree 𝑇𝑖 in  do
6: if MatchGraph(𝑇𝑖, c)==true then
7: Add 𝑇𝑖 into ;
8: end if
9: end for
10: end for
11: return ;

Theorem 3. For a given LF-subtree 𝑇𝑖 with 𝑛 nodes and the CN c, the time
complexity of MatchGraph is 𝑂(𝑛 ⋅𝑚), where 𝑛 and 𝑚 separately represent
the number and maximum degree of nodes in 𝑇𝑖.

Proof. Since 𝑇𝑖 has 𝑛 nodes, we can deduce that MatchGraph at most
conducts 𝑛 times comparisons even if c has more than 𝑛 nodes. In every
comparison, the major task is detecting whether the children of two

174

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

Algorithm 3 MatchGraph
Require:

CN c
A LF-subtree 𝑇𝑖

Ensure:
A boolean value

1: Initialize two queues 𝐿𝐹 -𝑞𝑢𝑒𝑢𝑒 and 𝐶𝑁-𝑞𝑢𝑒𝑢𝑒 respectively;
2: Put the roots of 𝑇𝑖 and c into 𝐿𝐹 − 𝑞𝑢𝑒𝑢𝑒 and 𝐶𝑁 − 𝑞𝑢𝑒𝑢𝑒 separately;
3: while 𝐿𝐹 − 𝑞𝑢𝑒𝑢𝑒 ≠ 𝑒𝑚𝑝𝑡𝑦 and 𝐶𝑁 − 𝑞𝑢𝑒𝑢𝑒 ≠ 𝑒𝑚𝑝𝑡𝑦 do
4: 𝑛𝑙 = 𝐿𝐹 − 𝑞𝑢𝑒𝑢𝑒.getFirstElement();
5: 𝑛𝑐 = 𝐶𝑁 − 𝑞𝑢𝑒𝑢𝑒.getFirstElement();
6: if 𝑛𝑙 .𝑑𝑒𝑔𝑟𝑒𝑒 == 𝑛𝑐 .𝑑𝑒𝑔𝑟𝑒𝑒 and 𝑛𝑐 .𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛() == 𝑛𝑐 .𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛() then
7: Put the children of 𝑛𝑙 into 𝐿𝐹 − 𝑞𝑢𝑒𝑢𝑒;
8: Put the children of 𝑛𝑐 into 𝐶𝑁 − 𝑞𝑢𝑒𝑢𝑒;
9: else
10: Return false;
11: end if
12: if 𝐿𝐹 − 𝑞𝑢𝑒𝑢𝑒 == 𝑒𝑚𝑝𝑡𝑦 then
13: Return true;
14: end if
15: end while

different nodes coming from 𝑇𝑗 and c are identical, and the time cost of
this operation is at most ((𝑚 + 𝑚′) × 𝑡𝑐), where m and 𝑚′ are supposed
as the maximum degrees of the nodes in c and 𝑇𝑗 respectively, and 𝑡𝑐 is
a constant time to detect whether two nodes have the same identifier.
Here, we can suppose 𝑚′ = 𝑚, then the total time cost of conducting 𝑛
comparisons is 2𝑚 × 𝑛 × 𝑡𝑐 , so the time complexity of MatchGraph is
𝑂(𝑛 ⋅ 𝑚). □

4. Ranking JTTs with the PageRank-based principle

In above section, we give the method to rank CNs with incorporating
user preferences. However, a CN usually corresponds to multiple JTT s
and these JTT s still need to be ranked effectively. For this, we propose
SPP-PR based on SPP, a PageRank-based method to further rank the
JTT s generated by top-k CNs. In SPP-PR, we first construct a weighted
directed graph G(V, E) corresponding to the database. Each tuple 𝑡𝑖
is represented by a node 𝑣𝑖 in V. For any two nodes 𝑣𝑖 and 𝑣𝑗 , there
is a directed edge ⟨𝑣𝑖, 𝑣𝑗⟩ and a backward edge ⟨𝑣𝑗 , 𝑣𝑖⟩ if and only if
there exists a foreign key on tuple 𝑡𝑖 that refers to the primary key
tuple 𝑡𝑗 . Further, we can view the data graph as a graph of web pages
(in the original PageRank context), where each node corresponds to a
page and the edge represents a reference from one page to another,
we are then able to compute the PageRank value 𝑤𝑖 for any node 𝑛𝑖
in an off-line fashion. For a selected CN c matching a keyword query
𝑞, we suppose it corresponds to a set of JTT s,  = {𝐽1, 𝐽2, ⋯, 𝐽𝑛},
where 𝐽𝑖 (𝑖 ∈ [1, 𝑛]) covers all keywords of 𝑞. For a JTT 𝐽𝑖, we defines
its score as 𝑆𝑃𝑅(𝐽𝑖) = (1 − 𝑒−2 log𝑆(𝐽𝑖) 𝑊)∕(1 + 𝑒−2 log𝑆(𝐽𝑖) 𝑊), where 𝑆(𝐽𝑖)
is the size of 𝐽𝑖, and 𝑊 represents the summary of PageRank scores
of all nodes in 𝐽𝑖, i.e., 𝑊 =

∑

𝑛𝑖∈𝐽𝑖 𝑤𝑖. Since log𝑆(𝐽𝑖) 𝑊 belongs to (0,
+∞) in theory, so the value range of 𝑆𝑃𝑅(𝐽𝑖) is (0,1). Unlike the score
functions that only employ scores of the tuples covering keywords for
evaluating joined tuple trees in many existing works (Hristidis et al.,
2003), our score function combines the PageRank values of all tuples in
a JTT. This is because the PageRank values of free tuples also probably
have positive influence on the ranking of JTT s. We take 𝑃𝑎𝑝𝑒𝑟𝑀𝑎𝑟𝑘𝑜𝑣 ⋈
𝑊 𝑟𝑖𝑡𝑒 ⋈ 𝐴𝑢𝑡ℎ𝑜𝑟 ⋈ 𝑊 𝑟𝑖𝑡𝑒 ⋈ 𝑃𝑎𝑝𝑒𝑟𝐿𝐷𝐴 as an example. If a generated
JTT contains a tuple in 𝐴𝑢𝑡ℎ𝑜𝑟 with a higher PageRank value, it is
reasonable to enhance the ranking of this JTT because an author with
higher PageRank value probably better meets the user preferences.

Since the score function of a JTT based on the PageRank principle
has been identified, the next purpose is to search the top-k JTT s
with maximum scores. Here, we cannot directly apply the evaluation
algorithms proposed by DISCOVER-II (Hristidis et al., 2003) to rank
JTT s because of the different scoring metrics, so we design the following
algorithm. Suppose the top-k CNs selected in the above section is  =
{𝑐1, 𝑐2,… , 𝑐𝑘}, for any candidate network 𝑐𝑖, we calculate the PageRank
score for every JTT corresponding to 𝑐𝑖 and then rank these JTT s in an

descending order in terms of their PageRank scores. We first select 𝑘
JTT s of 𝑐1 and put them into a set 𝑟. If 𝑐1 has more than 𝑘 JTT s, we
set the PageRank score of the 𝑘th JTT as a pruning bound; otherwise,
we continue to process the JTT s matching 𝑐𝑖+1 (1 < 𝑖 + 1 ≤ 𝑘) until
the number of elements in 𝑟 reaches 𝑘, and set the PageRank score
of the 𝑘th element as the pruning bound. After this, if we encounter a
JTT 𝐽𝑥 corresponding to 𝑐𝑖 and its PageRank score is greater than the
pruning bound, we will remove the 𝑘th element from 𝑟 and add 𝐽𝑥 into
it, and then update the pruning bound; If the PageRank score of 𝐽𝑥 is
not greater than the pruning bound, we can safely discard 𝐽𝑥 as well as
the elements after 𝐽𝑥, and then continue to process the JTT s matching
the next candidate network 𝑐𝑖+1. In this way, the JTT s in 𝑟 will be the
top-k results after all CNs in  have been processed.

5. Experiments

We conduct experiments to evaluate our proposed methods and
compare them with an existing approach that does not consider user
feedbacks.

5.1. Dataset and settings

Due to the lack of publicly available databases with query logs, we
use the DBLP database1 in our experiments and build our own query
log through a controlled user study. The dataset is about 870MB and
contains 12,594,911 tuples.

The DBMS used is MySQL with default configurations. We build
indexes for all primary keys and foreign keys. Full-text indexes are
built for all textual attributes. The experiments are conducted on a
workstation with a 2.71 GHz Intel Core i5-7200u processor and 8GB
of main memory.

The query set comes from a user study. Ten graduate students from
different research areas participate in our experiment as query initiators.
They formulated 60 ‘‘meaningful" queries consisting of varying number
of keywords related to their research areas. For each participant,
we applied 3-fold cross-validation on his queries. The queries were
randomly divided into three sets. In each trial, two folds were used as
the training set to generate the query log and the other was testing set.
For each query in the training set, with the predefined parameters (such
as 𝑇𝑚𝑎𝑥), all of the generated CNs, the number of which may range from
tens to hundreds , were presented to the corresponding participant in
sequence, in ascending order of size; the participant was asked to choose
‘‘yes’’ or ‘‘no’’ for each CN according to whether that CN meets his/her
requirement. The ‘‘yes’’ CNs were recorded in the query log. Up to here,
each participant had his own query log in each trail. We set minsup=10.
By the settings above, each participant has more than 200 frequent LF-
subtrees on average and the corresponding supports range from 10 to
about 300. For each query in testing set, all the generated CNs were
ranked by our methods and presented to the participant. The participant
assessed the result quality using a six-point scale ranging from 0 to 5
(5=‘‘perfect’’ and 0=‘‘bad’’). Similarly, the JTT s generated by SPP-PR
also can be evaluated by the participants with the same strategy.

We use SPP and SPP-PR to denote our proposed approaches. SPP
is the approach that ranks CNs by incorporating the user feedback, and
SPP-PR further ranks JTT s with the PageRank principle. The parameters
involved in the experiments are illustrated in Table 1 with explanation.
And Table 2 shows some sample queries from a user. A user is required
to issue queries that are reasonable. Generally, a query contains at least
two keywords and no more than four.

1 http://dblp.uni-trier.de/xml/

175

http://dblp.uni-trier.de/xml/

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

Table 1
Parameter under investigation.
𝜆 weight of the original score

𝑡 preference for larger structure in a CN
𝑇𝑚𝑎𝑥 the maximum allowed CN size
𝛼 the Sigmoid function parameter
𝐾 top-K results

Table 2
Query example.
𝑄1: bender, p2p 𝑄6: Hardware, luk, wayne
𝑄2: sigmod, xiaofang 𝑄7: Ishikawa, P2P, Yoshiharu
𝑄3: fagin, middleware 𝑄8: hongjiang, Multimedia, zhang
𝑄4: Owens, VLSI 𝑄9: vldb, xiaofang
𝑄5: p2p, Steinmetz 𝑄10: intersection, nikos

5.2. Effectiveness

To measure the effectiveness, we adopt four metrics, namely, Nor-
malized Discounted Cumulative Gain (NDCG), Precision at K (P@K), 11-
point Precision/Recall and F-measure. Each is described in detail as
follows.

• NDCG at K: For a given query q in the testing set, the ranked
candidate networks and JTT s are assessed manually to compute
NDCG@K-SPP and NDCG@K-SPP-PR. NDCG is computed as:

𝑁𝐷𝐶𝐺𝑞 =
𝐷𝐶𝐺𝑞

𝐼𝐷𝐶𝐺𝑞
, 𝐷𝐶𝐺𝑞 =

𝑘
𝛴
𝑖=1

2𝑟(𝑖) − 1
𝑙𝑜𝑔2(𝑖 + 1)

where 𝑟(𝑖) is an integer given by the user to indicate the degree of
the preference for the result returned at position i and 𝑟(𝑖)’s values
fall inside [0,5]; 𝐼𝐷𝐶𝐺𝑞 is the discounted cumulative gain for the
optimal ranking of query q’s candidate networks, namely, Ideal
Discounted Cumulative Gain(IDCG); 𝑁𝐷𝐶𝐺𝑞 is the normalization
result of 𝐷𝐶𝐺𝑞 by 𝐼𝐷𝐶𝐺𝑞 , ranged from 0 to 1. The motivation of
using NDCG@K is to pay more attention to the top-k results.

• Precision at K: P@K shows the fraction of the candidate networks
ranked in top K results that are preferred by the user. In our set-
tings, we define that a candidate network assessed with 3 or larger
is preferred. The position of preferred candidate networks within
top K is unconcerned. As the most intuitive metric, Precision@K
measures the overall user satisfaction with the top K results.

• 11-point Precision/Recall: For a query result, this metric reports
the precision that is measured at the 11 recall levels of 0.0, 0.1, 0.2,
…, 1.0. In our experiments, 11-pt Precision/Recall is the average
result for all the testing queries.

• F-measure: Given K, we can compute the precision and the recall
at K. Here, the candidate networks with 3 or larger points are
preferred. F-measure is the harmonic mean of precision and recall
and it is defined as 𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (𝛼2+1)𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙

𝛼2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙) . Here, we set 𝛼
as 1, then deduce that 𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 .

Effect of parameter 𝑡, 𝛼 and 𝜆 of Dynamic. Set 𝑇𝑚𝑎𝑥 = 7 and K=10.
Table 3 shows the performances of SPP and SPP-PR with respect to
NDCG@10 by varying the values of these parameters. Each line in
Table 3 indicates that when fix the value of t and then vary 𝛼 and 𝜆,
the best setting of 𝛼 and 𝜆 and the corresponding result are presented
(we do not show other settings here which only generate worse results).
Observed from the results, we find t has an obvious impact on the
performance of SPP but little influence on the effectiveness of SPP-PR.
This is because we find the top-k CNs generated by SPP are almost
identical but their ranked positions change significantly when t takes
different values. Hence, NDCG@10-SPP will be affected obviously by
t. As to SPP-PR, it will further rank the corresponding JTT s of every
CN based on the PageRank principle, which causes the ranked positions
of JTT s are almost irrelevant with that of CNs, so NDCG@10-SPP-PR

Table 3
NDCG@10 for varying 𝑡, 𝛼 and 𝜆.

t 2 3 4 5 6

𝛼 0.07 0.09 0.01 0.025 0.001
𝜆 0.7 0.5 0.1 0.1 0.3
NDCG@10-SPP 0.836 0.880 0.890 0.876 0.873
NDCG@10-SPP-PR 0.864 0.913 0.913 0.913 0.913

almost remains the same when t takes different values. But when t=2,
there is one different CN in the top-k CNs compared with t being other
values, which leads to some JTT s appearing in final results, making
the value of NDCG@10-SPP-PR become a little smaller. Observed from
the table, we also conclude that when t (preference to larger frequent
subtrees) is 4, NDCG@10-SPP and NDCG@10-SPP-PR both reaches the
best values 0.890 and 0.912 respectively with 𝛼 = 0.01 and 𝜆 = 0.1.

Effectiveness comparison for DISCOVER, SPP, and SPP-PR. We
use DISCOVER as a baseline here as its scoring function directly corre-
sponds to the ‘‘original score" part of the proposed new strategy. Fig. 5
shows that incorporating query log results in significant improvements
over DISCOVER. In Fig. 5(a) (𝑇𝑚𝑎𝑥 = 7), when K increases, the
performances of SPP and SPP-PR both decreases slightly. This is because
there will be more rank orders of the results when the value of 𝑘
increases, then the possibility of identifying the rank order accepted by
most users from all rank orders will decrease. Even so, SPP and SPP-PR
outperform DISCOVER by a considerable margin.

The influence of 𝑇𝑚𝑎𝑥 on the ranking effectiveness of three ap-
proaches is shown in Fig. 5(b). When we vary 𝑇𝑚𝑎𝑥, we find that the gap
between our proposed algorithms and DISCOVER remains significant;
meanwhile, SPP and DISCOVER both progress with a downward trend
when 𝑇𝑚𝑎𝑥 increases, that is, the overlarge value of 𝑇𝑚𝑎𝑥 will decay the
performance of SPP and DISCOVER. However, the varying value of 𝑇𝑚𝑎𝑥
has no obvious impact on NDCG of SPP-PR, this is because SPP-PR will
further rank the JTT s based on the selected CNs, which can reduce the
impact of 𝑇𝑚𝑎𝑥 on the performance of SPP-PR only if the selected top-k
CNs remain the same.

Fig. 5(c) shows the precisions of three approaches by varying k.
From the results, we find the precisions of SPP and DISCOVER both
decrease when the value of k increases, but the precision of SPP-PR
increases first and then decreases. This because the results returned by
SPP are CNs, and the optimal CNs are easily to be identified according
to the user feedback when k takes smaller values. But as to SPP-PR, it
returns JTT s, the smaller granularity results for users, which leads to
the identification of the results satisfying different users’ preferences
becomes more difficult if k is too small. For instance, when k equals
to 1, we need to return the optimal JTT for all users, but the accuracy
rate of determining the optimal result is not high. When the value of k
grows, the top-k results could have more possibility to contain the JTT s
meeting the users’ preferences; but this probability will decrease if the
value of k continue to increase.

To verify the above analysis, we give an example that shows the
results returned by SPP-PR on our employed DBLP data set in Table 4.
For the second query (𝑄2: sigmod, xiaofang) in Table 2, we illustrate the
results returned by SPP-PR based on the CN ‘‘Author𝑥𝑖𝑎𝑜𝑓𝑎𝑛𝑔 ⋈ Paper ⋈
Conference𝑠𝑖𝑔𝑚𝑜𝑑 ". Since the information of ‘‘Author" and ‘‘Conference"
has been given, we only show the selected papers in Table 4. When
𝑘=1, some participants deem that the result does not conform to their
preferences, so the precision is not high. But this situation becomes
better when the value of 𝑘 increases, e.g., most participants view their
preferred papers are contained in the results when 𝑘=4. However, as 𝑘
continues to grow, the results also include some undesired ones to some
participants. For instance, ‘‘Sampling dirty data for matching attributes"
is a needless result to most participants when 𝑘 is set to 7.

We also evaluate the impact of 𝑇𝑚𝑎𝑥 on the precisions of three
approaches in Fig. 5(d). The results show that the precisions of SPP and
SPP-PR are obviously higher than that of DISCOVER, which also verifies

176

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

Fig. 5. Effectiveness comparison for DISCOVER, SPP, and SPP-PR.

Table 4
The results of the query 𝑄2.

𝑄2: sigmod, xiaofang

𝑘 = 1 Spark: top-k keyword query in relational databases

𝑘 = 4

Spark: top-k keyword query in relational databases
Searching trajectories by locations: an efficiency study
Monitoring path nearest neighbor in road networks
K-nearest neighbor search for fuzzy objects

𝑘 = 7

Spark: top-k keyword query in relational databases
Searching trajectories by locations: an efficiency study
Monitoring path nearest neighbor in road networks
K-nearest neighbor search for fuzzy objects
Towards Effective Indexing for Very Large Video Sequence Database.
Sampling dirty data for matching attributes.
Effective data co-reduction for multimedia similarity search.

that the ranking effectiveness is actually enhanced when we incorporate
the user preferences. Another case we observe is that the precisions of
three approaches first increase slightly and then decrease slowly when
the value of 𝑇𝑚𝑎𝑥 grows. The reason caused this phenomenon is that
some longer CNs will be included by the top-k ones and these longer
CNs probably exactly conform to the preferences of participants; but
when the value of 𝑇𝑚𝑎𝑥 keeps increasing, more longer CNs will appear in
the top-k ones but some of they are not the results meeting participants’
requirements, which results in the precisions of these approaches take
a downward trend.

Overall ranking effectiveness comparison. Fig. 6(a) shows the 11-
points precision/recall graph for DISCOVER,SPP, andSPP-PR, in which
the precision generally goes down with recall growing. In the global
perspective, SPP behaves well with points (0.1,0.988), …, (0.9,0.230),
but the precision rate drops sharply with the recall rate increasing. As
to SPP-PR, its precision/recall curve also presents a downward trend
in general, but it declines more smoothly than the precision/recall
curve of SPP. The same as the above evaluations, DISCOVER takes the
worst performance. Meanwhile, as an auxiliary, Fig. 6(b) presents the
F-measure value by varying k. The three preserve some differences as in
the previous case. As the value of 𝑘 increases, the precisions of SPP and
SPP-PR both decline significantly but their recalls will become greater,
which leads to the F-measure curves of SPP and SPP-PR go down more
smoothly.

Search efficiency evaluation. Since our work involves the problems
of detecting isomorphic graphs, identifying the best proper partition,
and calculating final results (JTT s), so it is essential to evaluate the time
costs of relevant algorithms. Due to the isomorphic graph matching is a
basic step to the identification of the best proper partition, we thereby
compare the performances of MatchGraph and Ullmann, which both
can be used for detecting the isomorphic graphs in Fig. 7(a). Here, we
first select five generated CNs and construct a set containing different
numbers of LF-subtrees. For every CN, we make MatchGraph and
Ullmann detect which LF-subtrees in this set are contained by the
specified CN, and then keep the processing time for each CN. We then
average the time costs of processing five CNs as the final result shown
in Fig. 7(a). The observation displays that MatchGraph outperforms
significantly than Ullmann regardless of the number of LF-subtrees to be
detected, this is because MatchGraph only needs to detect whether a LF-
subtree is isomorphic to a subgraph of a CN but Ullmann has to discover
all isomorphic subgraphs to the LF-subtree from the CN. This evaluation
testifies that MatchGraph can reduce a great deal of calculations.

In Fig. 7(b), we test the performance of LF-CN-M for identifying the
best proper partition for a CN by varying 𝑇𝑚𝑎𝑥. Here, we randomly select
three users labeled as ‘‘User1’’, ‘‘User2", and ‘‘User3", and then process
one query submitted by every user. In this process, we census the time
of identifying the best proper partition for every CN and then take the
average value of these times for every user respectively. From Fig. 7(b),
we find that 𝑇𝑚𝑎𝑥 has an obvious impact on the performance of LF-CN-
M, because the greater value of 𝑇𝑚𝑎𝑥 will generate CNs with larger sizes,
then more nodes need to be detected when identifying the best proper
partition for these CNs.

The search efficiency of SPP is evaluated in Fig. 7(c). The time cost of
SPP includes the time of identifying the best proper partition for every
CN as well as the time of ranking all 𝐶𝑁s. When the value of 𝑇𝑚𝑎𝑥 is
fixed, we find that the time cost of SPP almost remains the same as 𝑘
takes different values. The reason is that, regardless of the value of 𝑘,
SPP always needs to identify the best proper partition for all CNs and
rank them. However, the search efficiency of SPP is heavily affected
by 𝑇𝑚𝑎𝑥 because the average size of CNs will become greater when the
value of 𝑇𝑚𝑎𝑥 grows and the CNs with larger size need more time to be
processed.

Finally, we test the efficiency of SPP-PR in Fig. 7(d), where the
processing time refers to the time of generating JTT s based on CNs,

177

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

Fig. 6. Overall effectiveness comparison.

Fig. 7. Search efficiency evaluation.

calculating PageRank scores of JTT s, and determining the top-k results.
The tests show that the cost of SPP-PR almost increases linearly when
k grows. The reason is that more CNs will be selected by SPP as k takes
greater values, which will cause more JTT s to be generated and ranked,
hence the search time of SPP-PR is notable on the rise. When k is fixed,
we observe that the consumed time of SPP-PR is also slightly influenced
by 𝑇𝑚𝑎𝑥.

6. Conclusion and future work

Existing work on keyword search in databases has considered the
problem of improving the search effectiveness extensively. However,
few works have explicitly taken user preferences into the consideration
when ranking query results. Additionally, they usually separate the us-
ages of the schema graph and the data graph when processing keyword
queries on databases. In this paper, by introducing user feedback to the
problem of ranking CNs, we propose a new ranking strategy to adapt to
user preferences. In this new ranking strategy, we come across a NP-hard
problem and provide a complete solution. Based on the selected top-k
CNs, we further designed a data graph based algorithm to improve the
ranking effectiveness of JTT s with the PageRank principle. Finally, we
evaluated the proposed approaches on the DBLP dataset via a user study,
which verifies the effectiveness of our strategy.

In the future, beyond adopting the frequent subtrees to embody
user preferences, we will study the problem of mining more valuable

information from user query logs, and meanwhile optimize the ranking
strategy based on the mined information. Additionally, user query logs
usually keep growing, so we also plan to explore an incremental score
function that can update the scores of different CNs when the scale of
user query logs gradually increases.

Acknowledgments

This work was supported in part by the National Natural Sci-
ence Foundation of China (No. 61702217), the Primary Research
and Development Plan of Shandong Province (No. 2017GGX10144,
No. 2018GGX101048, No. 2017CXGC0701), National Natural Science
Foundation of China (No. 61873324, No. 61772231, No. 61771230), the
Shandong Provincial Natural Science Foundation (No. ZR2017MF025),
the Project of Shandong Provincial Social Science Program (No.
18CHLJ39), and the Project of Shandong Province Higher Educational
Science and Technology Program (No. J16LN07).

References

Agrawal, S., Chaudhuri, S., Das, G., 2002. DBXplorer: A system for keyword-based search
over relational databases. In: ICDE.

Alavi, F., Hashemi, S., 2015. DFP-SEPSF: A dynamic frequent pattern tree to mine strong
emerging patterns in streamwise features. Eng. Appl. Artif. Intell. 37, 54–70.

Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., Velegrakis, Y., 2016. Com-
bining user and database perspective for solving keyword queries over relational
databases. Inform. Syst. 55, 1–19.

178

http://refhub.elsevier.com/S0952-1976(19)30017-X/sb1
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb1
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb1
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb2
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb2
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb2
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb3
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb3
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb3
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb3
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb3

Z. Yu, A. Abraham, X. Yu et al. Engineering Applications of Artificial Intelligence 81 (2019) 169–179

Chi, Y., Yang, Y., Muntz, R., 2003. Indexing and mining frequent subtrees. In: ICDE.
Coffman, J., Weaver, A.C., 2014. An empirical performance evaluation of relational

keyword search techniques. IEEE Trans. Knowl. Data Eng. 26 (1), 30–42.
Duong, H., Truong, T., Le, B., 2018. Efficient algorithms for simultaneously mining concise

representations of sequential patterns based on extended pruning conditions. Eng.
Appl. Artif. Intell. 67, 197–210.

Fakas, G., Cai, Z., Mamoulis, N., 2015. Diverse and proportional size-l object summaries
for keyword search. In: SIGMOD. ACM, pp. 363–375.

Gan, W., Lin, J.C.-W., Fournier-Viger, P., Chao, H.-C., Zhan, J., 2017. Mining of frequent
patterns with multiple minimum supports. Eng. Appl. Artif. Intell. 60, 83–96.

Gao, L., Yu, X., Liu, Y., 2011. Keyword query cleaning with query logs. In: WAIM. pp.
31–42.

He, H., Wang, H., Yang, J., Yu, P.S., 2007. BLINKS: Ranked keyword searches on graphs.
In: SIGMOD. pp. 305–316.

Hristidis, V., Gravano, L., Papakonstantinou, Y., 2003. Efficient IR-style keyword search
over relational databases. In: VLDB. pp. 850–861.

Hristidis, V., Papakonstantinou, Y., 2002. DISCOVER: Keyword search in relational
databases. In: VLDB.

Hulgeri, A., Nakhe, C., 2002. Keyword searching and browsing in databases using banks.
In: ICDE.

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H., 2005.
Bidirectional expansion for keyword search on graph databases. In: VLDB. pp. 505–
516.

Lin, J.C.-W., Ren, S., Fournier-Viger, P., Pan, J.-S., Hong, T.-P., 2018. Efficiently updating
the discovered high average-utility itemsets with transaction insertion. Eng. Appl.
Artif. Intell. 72, 136–149.

Lin, Z., Xue, Q., Lai, Y., 2016. PACOKS: Progressive ant-colony-optimization-based
keyword search over relational databases. In: WAIM. Springer, pp. 107–119.

Liu, Z.-Y., Qiao, H., 2014. GNCCP-Graduated nonconvexity and concavity procedure. IEEE
Trans. Pattern Anal. Mach. Intell. 36 (6), 1258–1267.

Liu, F., Yu, C., Meng, W., Chowdhury, A., 2006. Effective keyword search in relational
databases. In: SIGMOD. pp. 563–574.

Luo, Y., Lin, X., Wang, W., Zhou, X., 2007. SPARK: Top-k keyword query in relational
databases. In: SIGMOD. pp. 115–126.

Luo, Y., Wang, W., Lin, X., Zhou, X., Wang, J., Li, K., 2011. Spark2: Top-k keyword query
in relational databases. TKDE 23 (12), 1763–1780.

Peng, Z., Zhang, J., Wang, S., Wang, C., 2009. Bring user feedback into keyword search
over databases. In: Proceeding of the 3rd Workshop on Electronic Government
Technology and Application, pp. 210–214.

Qiao, S., Han, N., Zhou, J., Li, R.-H., Jin, C., Gutierrez, L.A., 2018. SocialMix: A familiarity-
based and preference-aware location suggestion approach. Eng. Appl. Artif. Intell. 68,
192–204.

Yagci, A.M., Aytekin, T., Gurgen, F.S., 2017. Scalable and adaptive collaborative filtering
by mining frequent item co-occurrences in a user feedback stream. Eng. Appl. Artif.
Intell. 58, 171–184.

Yang, M., Ding, B., Chaudhuri, S., Chakrabarti, K., 2014. Finding patterns in a knowledge
base using keywords to compose table answers. Proc. VLDB Endowment 7 (14), 1809–
1820.

Yu, X., Shi, H., 2012. CI-Rank: Ranking keyword search results based on collective
importance. In: ICDE.

Zeng, Z., Bao, Z., Ling, T.W., Lee, M.L., 2012. Isearch: An interpretation based framework
for keyword search in relational databases. In: KEYS. pp. 3–10.

Zhou, J., Liu, Y., Yu, Z., 2015. Improving the effectiveness of keyword search in databases
using query logs. In: WAIM. Springer, pp. 193–206.

179

http://refhub.elsevier.com/S0952-1976(19)30017-X/sb4
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb5
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb5
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb5
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb6
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb6
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb6
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb6
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb6
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb7
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb7
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb7
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb8
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb8
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb8
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb9
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb9
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb9
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb10
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb10
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb10
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb11
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb11
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb11
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb12
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb12
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb12
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb13
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb13
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb13
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb14
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb14
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb14
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb14
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb14
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb15
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb15
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb15
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb15
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb15
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb16
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb16
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb16
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb17
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb17
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb17
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb18
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb18
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb18
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb19
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb19
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb19
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb20
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb20
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb20
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb22
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb22
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb22
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb22
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb22
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb23
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb23
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb23
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb23
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb23
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb24
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb24
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb24
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb24
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb24
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb25
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb25
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb25
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb26
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb26
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb26
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb27
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb27
http://refhub.elsevier.com/S0952-1976(19)30017-X/sb27

	Improving the effectiveness of keyword search in databases using query logs
	Introduction
	Preliminaries
	Ranking CNs with query logs
	A naive method based on query logs
	Ranking CNs with LF-subtrees
	Score function for ranking CNs
	Complexity of identifying the best proper partition

	Identification of the best proper partition
	SPP Algorithm
	LF-CN-M algorithm

	Ranking JTTs with the PageRank-based principle
	Experiments
	Dataset and settings
	Effectiveness

	Conclusion and future work
	Acknowledgments
	References

