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Abstract Dust storm and sand storm are a natural phenomenon that has the potential
to affect the health of people and abruptly interrupt the daily activities of public
causinghazards, delay in advancement, or even economic losses. Though suchnatural
phenomenon could not be prevented, adequate alertness could prevent the damages
and losses that these natural calamities bring to the mankind and its surroundings.
The satellite radar images can detect the occurrence of the dust and sandstorm in any
portion of the world. These satellite images are revealed with several color-coding
to show the severity of the event in any particular area in a given time. Since, quick
and accurate analysis of these images are the key for the preparedness against such
event, segmenting these radar images according to the severity can help to easily
analyze regions of dust storm. Evolutionary algorithms like differential evolution
are employed for resolving optimization issues similar to image segmentation. In
this writing, an adaptation of differential evolution labeled as composite differential
evolution (CODE) is developed. CODE is combined with k means technique for
performing segmentation of the radar images. The new technique was found to be
efficient, and the image quality of segmentation is greatly improved.

Keywords Optimization · k means technique · Control parameters · PSNR ·MSE

1 Introduction

Sand and dust storms (SDS) are a global environmental issue that can affect the
livelihood and health of the mankind. They usually occur in arid and semi-arid
regions. These sandstorms can cause destruction to agricultural land, transportation,
human health, and infrastructure. Particles of dust move over a large distance which
may carry pathogens and harmful substances causing severe health issues. These dust
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storms may be triggered by climatic changes, land degradation, and un-sustainable
management of water and land resources.

Radar and microwave images help in the detection of SDS even in cloudy envi-
ronment. Microwave signals can penetrate through clouds easily, and when a region
with dust is spotted, the signal is reflected back. Color bars are used to signify the
frequency of the SDS in a particular region. As radar image is complex, it is quite
time consuming to precisely specify the hazard severity in a particular area. By
segmenting the images on the basis of color bar, the particular risk severity can be
observed, and on the basis of intensity, suitable alarms can be triggered.

Image segmentation is a technique of grouping an image into various sections
based on the similar characteristics of the image. Problems of image segmentation are
categorized as unsupervised learning, and these topics can be cracked through evolu-
tionary approaches of reproduction, mutation, recombination, and selection. Storn
and Price [1] familiarized the DE technique which uses the thoughts of evolutionary
computing. DE is a simple, hypothetical approach that helps to resolve optimization
issues. Effectiveness and robustness of DE is computed on the foundation of control
parameters and trial vector generation strategy in usage. Various versions of DE are
considered by varying these constraints.

Here, a modification of DE termed composite differential evolution approach
(CODE) is created by using three dissimilar mutation constraints. The new constraint
F1 gets a random value amid (0, 1), and N uses the product of F and F1. This
approach is related to other standard variations of DE by tabularization to approve
improved efficacy of CODE. This approach is employed in image thresholding for
segregating theweather imagery on the basis of definite climatic state. CODEmethod
is used along with k means image segmentation technique to achieve the segmented
image. The first section of the paper details the differential evolution method and
the anticipated variant that was created. The second segment clarifies the idea of k
means technique on image. The residual section enlightens the implementation of
the variant in k means technique and the conclusions found through the study.

1.1 Background Study

Cheng et al. [2] proposed a thresholding technique by executing fuzzy partition on
a two- dimensional (2D) histogram on the basis of fuzzy relation and extreme fuzzy
entropy principle. The tests conducted show the new technique works better than
existing methods. Cheng et al. [3] gave a segmentation procedure for color images
on the basis of homogram thresholding and region merging. This technique was
compared with histogram-based technique, and efficiency of the new technique was
justified. Porte et al. [4] uses Tsallis entropy technique for segmenting images, and
the results were tabulated.

Francesca and Schettini [5] performed a study to apply genetic algorithm to find
out the borders of skin clusters inmultiple color space. Recall and precision scores are
used to measure the performance of skin detection approaches. Yin [6] proposed an
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iterative programming procedure to lessen order of magnitude for calculatingMCET
objective function. PSO approach is used for probing the near-optimalMCET thresh-
olding. Maitra and Chatterjee [7] devised an enhanced hybrid of PSO which uses
both cooperative and comprehensive learning along with few alterations. The hybrid
algorithm named HCOCLPSO is assessed through an enhanced GA-based algo-
rithm. Senthilkumar and Rajesh [8] perform a study on the theory of edge detection
for image segmentation by means of fuzzy logic, neural networks, and genetic algo-
rithm. Akhilesh et al. [9] projected a modification of PSO for imagery segmentation
using prime multilevel thresholding. He also gave an iterative technique for attaining
initial values of candidate multilevel thresholds which is based on Otsu technique.

Sarkar and Das [10] devised a technique to integrate 2D histogram associated data
for comprehensive multilevel thresholding by means of maximum Tsallis entropy.
The results obtained are evaluated using known benchmark segmentation with 300
images. Kurban et al. [11] perform an assessment of evolutionary and swarm-based
optimization algorithm for multilevel color image thresholding issues. Here, well-
known evolutionary algorithm and swarm-based algorithms are applied to 20 test
images for segmentation, and the results are compared. Based on the statistical
analysis, swarm-based algorithms show better accuracy in comparison while evolu-
tionary algorithm is faster. Sarkar et al. [12] devised a unique multilevel thresh-
olding method for unsupervised separation between objects and background using
minimum cross entropy (MCE). The comparative results show the efficacy of the
projected method. Ramadas et al. [13] devised a modification of differential evolu-
tion approach coined as FSDE. This technique is used for clustering numerical data.
The technique is proposed to be extended for clustering images. Suresh and Shyam
[14] proposed modified DE algorithm for enhancing the brightness and contrast of
satellite images. Kaur and Kumar [15] proposed image encryption technique using
differential evolution. Ramadas et al. [16] projected anothermodification of DE algo-
rithm termed as FSDE. This approach was used for data clustering, and the efficiency
of the approach was verified. Ramadas and Abraham [17] introduced another hybrid
of DE named transformed differential evolution which showed heightened results
for detecting tumors in MRI images. Krishna and Ravi [18] implemented binary
differential evolution for customer segmentation.

2 Classical Differential Evolution

In an n-dimensional search space, the chosen number of vectors is recognized casu-
ally. In each reiteration, more than one vectors are picked indiscriminately from the
populace and are joint to formulate a novel vector. The subsequent vector obtained
is equated with pre-obtained target vector to attain a trial vector. If trial vector offers
acceptable objective function, then trial vector is recognized for subsequent group.
Mutation, recombination, and selection are tracked until certain ending criteria is
reached. DE employs the populace of NP candidates indicated by Xi,G , wherein
index i = 1, 2...N P formulates populace while G represent the group of populace.
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Mutation: For any specified variable Xi,G , indiscriminately pick three vectors
Xr1,G, Xr2,G , and Xr3,G where r1, r2, r3 are dissimilar from each other. Subsequently
donor vector Vi,G is calculated by totaling the weighted difference of two vectors to
the third vector.

Vi,G = Xr1,G + F × (Xr2,G − Xr3,G) (1)

The mutation factor F is a fixed value from (0, 1). The mutation function
discriminates one DE approach from the other.

Crossover/Recombination: Trial vector Ui,G is produced for target vector Xi,G

by means of binomial crossover. Using probability Cr ∈ [0, 1][0, 1], the modules of
donor vector move into trial vector. Crossover probability Cr is designated together
with populace dimension N P .

Uj,i,G+1 =
{
Vj,i,G+1 i f randi, j [0, 1] ≤ Cr or i f j = Irand
X j,i,G+1 i f randi, j [0, 1] > Cr or i f j %= Irand

(2)

where, randi, j ≈ ∪[0, 1] and Irand is an uninformed number from 1,2…N.
Selection: Trial vector and vector in existing population determines the final

population that enters the next generation. Target vector Xi,G is coupled with trial
vector Vi,G , and the lowermost result of function is considered into subsequent group.

Xi,G+1 =
{
Ui,G+1 i f f (Ui,G+1) ≤ f (Xi,G) where i = 1, 2, ...N
Xi,G otherwise

(3)

3 Composite Differential Evolution

The outcomes of DE algorithm is highly depended on the proper alignment of its
parameters. Though studies are being done on parameter alteration of DE, numerous
undependable inferences were attained resulting in more research in developing
better variants of DE. So different parameter settings are suggested to improve the
performance of the resultant variant algorithm. CODE is a variation of classical
differential evolution algorithm where the mutation approach in DE is improved. In
CODE, three control constraints are employed. The parameter F acknowledged as
amplifying parameter uses a fixed value amid (0, 1) and F1 uses a random value
amongst (0, 1). The new parameter N uses the product of F and F1. The parameters
F, F1, andN permit stochastic deviations in the improvement of the difference vector
and hence help to preserve population diversity as the exploration progresses. The
variables Xr1,G ,Xr2,G, Xr3,G are chosen arbitrary. During each generation, each of
the three randomly chosen trial vector is chosen to generate a new donor vector. The
projected approach is defined as:
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X ′ = Xr1,G + N .
(
F.

(
Xbest,G − Xr2,G

)
− F1.

(
Xbest,G − Xr3G

))
(4)

Since three varied control constraints are used, the value of donor vector is height-
ened greatly, and henceforward, the efficacy of CODE algorithm is also heightened
massively. By utilizing the greatest solution vector, this method agrees earlier in
contrast to the classical schemes having arbitrary vectors only. The diversity of
possible movement in the population increases with increased pairs of solution
and hence supports the exploration of search space. This helps to avoid premature
convergence and escape local minima. This technique searches the section around
each Xbest,G , for each mutated point preserving the exploratory feature and thereby
speeding up the convergence.After obtaining the donor vector frommutation strategy
in Eq. 4, the trial vector is attained using Eq. 2. Then subsequently, the variables go
into the selection stage using Eq. 3.

4 Experimental Settings

CODE technique was implemented using MATLABr2017b, and a comparative
consequence was achieved. Five old-style mutation strategies are considered, and
the projected method CODE and resultant outcomes were related. Fifteen varied
benchmark functions were attained, and the consequences were computed by allo-
cating the (VTR) value to reach and number of iterations. The strategy was verified
by fitting the magnitude as 25 and 50. One of the results attained is given in Table 1.

By fixing VTR and dimension, the best value, CPU time, and number of function
evaluation (NFE) of varied benchmarked techniques are computed. Certain func-
tion obtained superior results for all conventional DE and CODE approach. The
complete outcome demonstrates that CODE technique has improved efficiency in
contrast to the traditional DE strategy. Multiple comparative results from Table 1 is
analyzed using a nonparametric test. As more than two algorithms are compared,
a multiple comparison statistical type of nonparametric test is employed. Freidman
test is the simplest statistical test for multiple comparison which detects if there is a
global difference between the related outcomes attained. Friedman statistical test is
performed on CODE technique to authenticate the outcomes. On the basis of results
from Table 1, the Friedman test was used and the consequences are given in Table 2.

The data from Table 1 is converted to its corresponding ranks by allocating ranks
to each value in every row. Then, the average rank of each column is calculated, and
the final rank for each algorithm is attained. The ranks gained from the Friedman
test is presented in Table 3.
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Table 2 Test statistics N 50

Chi sq 22.43

Df 5

Asymptotic significance 0.0004

Table 3 Mean ranking of
various approaches

Strategies Mean rank on best value

DE/best/1 2.73

DE/best/2 4.32

DE/rand/1 3.12

DE/best-to-rand/1 2.76

DE/rand/2 5.11

CODE 3.0

5 Image Segmentation Technique

The technique used for image segmentation is the k means algorithm. K means
algorithm was introduced by MacQueen [19]. This algorithm is commonly used in
image segmentation to group the pixel objects on the basis of features into k groups.
The pixels of the image are related to colors defined in RGB. The consortium of
pixels is performed by using the minimal distance between the object and centroid.

Let us consider an image with resolution x, y, and the image has to be segmented
into k clusters. Input image is considered as p(x, y) which has to be grouped and ck
is the cluster center. The minimal distance is calculated using the Euclidean distance
which is denoted as:

distance(x, y) =
{

∑

i

(xi − yi )2
} 1

2

(5)

The objective function for this technique is the calculation of the centroid of the
cluster which is denoted as:

ck =
1
k

∑

y∈ck

∑

x∈ck
p(x, y) (6)

The algorithm for k means for clustering an image is given as:
Step 1: Select the number of cluster k.
Step 2: Take an arbitrary point as center.
Step 3: Repeat steps 4 to 6 for each pixel of the image until the condition is

satisfied.
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Step 4: Compute the Euclidean distance d between the center and each pixel of
image using Eq. 5.

Step 5: Allocate all pixels to closest center on the basis of distance d.
Step 6: Re-compute the new center for the cluster using Eq. 6
Step 7: End loop.
Step 8: Restructure cluster pixels into an image.
This technique collects data of similar type together. The superiority of the image

is subject to the number of clusters and the initial centroid considered.

6 Multi-level Thresholding with CODE Approach

K means algorithms often suffer from the optimization of the mean squared error
condition and is confined in local minima. The new improved CODE algorithm helps
to avoid local minima. CODE approach is applied to k means technique to enhance
the performance of image segmentation. The elements of the CODE population takes
the form of a vector which contains the coordinates of centroids of K clusters. Each
vector is assigned to the cluster represented by the closest centroid. A population is
created randomly in which the each individual represents a class center. A pixel is
assigned to the class with nearest center. Fitness of each solution is calculated by
finding the distance between the pixels and cluster centers. Offspring is generated
using the mutation and crossover functions of CODE algorithm. The performance
of the offspring are compared with the parent, and the best solutions are considered
into the next generation based on the objective function value shown in Eq. 6. These
procedures are repeated until the centroid remains unchanged. The flow diagram for
the planned work is given in Fig. 1.

7 Test Results on Image Segmentation

CODE strategy was executed and was merged with the k means technique to achieve
image segmentation. This technique is implemented on two groups of weather
images. The conclusions achieved establish that the projected CODE approach gives
boosted consequences for segmentation in comparisonwith traditionalDE technique.
Weather images from www.vizrt.com are considered, and k means segmentation is
applied on these images. The original images are segmented based on k means and
CODE with k means, and the outcomes are given in Figs. 2, 3, 4, and 5.

The superiority of the technique is substantiated with the peak-to-signal ratio
(PSNR) and CPU time. PSNR is the degree of superiority among the real imagery
and the sectional imagery on the basis of mean square error (MSE). It is denoted as:

PSNR(σ, s) = 20 log10

[
255√

MSE(σ, s)

]
(7)

http://www.vizrt.com
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Fig. 1 Flowchart for CODE
with k means

Initialize CODE algorithm

Allocate the objective function

Get the image 

Perform k means segmentation

Start

Is centroid changed
Y

Final image after applying k means is 
displayed

Stop

N

Fig. 2 Breakdown of image 1 a Real imagery b Sectional imagery using k means c Sectional
imagery using CODE with k means

where σ is the real imagery and sis the sectional imagery. If the magnitude of
imagery is m × n, then the mean square error (MSE) is computed as:

MSE = 1
m ∗ n

m−1∑

i=0

n−1∑

j=0

[σ (m, n) − s(m, n)] (8)
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Fig. 3 Breakdown of image 2 a Real imagery b Sectional imagery using k means c Sectional
imagery using CODE with k means

Fig. 4 Breakdown of image 3 a Real imagery b Sectional imagery using k means c Sectional
imagery using CODE with k means

Fig. 5 Breakdown of image 2 a Real imagery b Sectional imagery using k means c Sectional
imagery using CODE with k means

Table 4 gives the comparative values of PSNR andCPU time taken for segmenting
the weather imagery using traditional k means technique and various variants of DE
algorithm and CODE algorithm with k means technique. The outcomes depict that
the values attained for CODE with k means technique is finest in assessment to
the classical techniques. Sandstorm radar images are quite complex, and it is quite
difficult to detect the regions of extreme sandstorm. By segmenting the image, we can
extract regions of the image based on hazard severity. This helps in giving alert to the
public to take precautions during such extreme conditions. The precise segmented
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Fig. 6 Image 1 segmented on the basis of sandstorm risk severity

Fig. 7 Image 1 segmented on the basis of sandstorm risk severity

section of radar images for the model images based on hazard severity are shown in
Figs. 6, 7, 8, and 9.

8 Conclusions

CODE was implemented, and the outcome was related with the traditional mutation
techniques. The outcome showed that CODEwas highly efficient in comparisonwith
traditional techniques. CODEwas then combined with kmeans algorithm to perform
segmentation of weather radar images. The efficiency of the segmented image was
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Fig. 8 Image 3 segmented on the basis of sandstorm risk severity

Fig. 9 Image 4 segmented on the basis of sandstorm risk severity

verified by testing the performance of algorithm used by means of PSNR and CPU
time taken. The segmented imagerywas then clustered on the basis of hazard severity.
This technique can be applied for image enhancement, texture analysis, etc.
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Appendix

A. Benchmark functions used:
Sphere function:

f (x) =
d∑

i=1

x2i

where −5.12 < xi < 5.12.
Beale function:

f (x) = (1.5 − x1 + x1x2)2 +
(
2.25 − x1 + x1x22

)2 +
(
2.625 − x1 + x1x32

)2

where −4.5 < xi < 4.5.
Booth function:

f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

where −10 < xi < 10.
Schwefel function:

f (x) = 418.9829d −
d∑

i=1

xi sin
(√

|xi |
)

where −500 < xi < 500.
Michalewicz function:

f (x) = −
d∑

i=1

sin(xi ) sin2m
(
i x2i
π

)

where 0 < xi < π.
Schaffner function N.2:

f (x, y) = 0.5+ sin2(x2 − y2) − 0.5
(1+ 0.001(x2 + y2))2

where −100 < xi < 100.
Schaffner function N.4:

f (x, y) = 0.5+ cos2(sin2(
∣∣x2 − y2

∣∣)) − 0.5
(1+ 0.001(x2 + y2))2

where −100 < xi < 100.
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Himmel Blau function:

f (x, y) = (x2 + y − 11)2 + (y2 + x − 7)2

where −5 < xi < 5.
Bird function:

f (x, y) = sin(x)e(1−cos(y))2 + cos(y)e(1−sin(x))2 + (x − y)2

where −2π < xi < 2π.
Extended cube function:

f (x) =
n∑

i=1

100(xi+1 − x3i )
2 + (1 − xi )2

where −100 < xi < 100.
Ackley function:

f (x) = −a exp (−b

√√√√ 1
d

d∑

i=1

x2i ) − exp(
1
d

d∑

i=1

cos(cxi )) + a + exp(1)

where −15 < xi < 30; a = 20, b = 0.2, c = 2π.
Goldstein-price function:

f (x) = (1+ (x + y + 1)2(19 − 14x + 3x2 − 14y6xy + 3y2))(30

++(2x − 3y)2(18 − 32x + 12x2 + 48y − 36xy + 27y2))

where −2 < xi < 2.
Griewank function:

f (x) =
d∑

i=1

x2i
4000

−
d∏

i=1

cos (
xi√
i
)+ 1

where −600 < xi < 600.
Rastrigen function:

f (x) = 10d +
d∑

i=1

[x2i − 10 cos(2πxi )]

where −5.12 < xi < 5.12.
Rosenbrock function:
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f (x) =
d−1∑

i=1

[
100

(
xi+1 − x2i

)2 + (xi − 1)2
]

where −5 < xi < 10.
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