www.ietdl.org

Published in IET Computers & Digital Techniques
Received on 21st September 2012

Revised on 11th May 2013

Accepted on 13th May 2013

doi: 10.1049/iet-cdt.2012.0109

ISSN 1751-8601

Field programmable gate arrays-based differential
evolution coprocessor: a case study of spectrum
allocation in cognitive radio network

Kiran Kumar Anumandla’, Rangababu Peesapati', Samrat L. Sabat', Siba K. Udgata?,
Ajith Abraham?

'School of Physics, University of Hyderabad, Hyderabad 500046, India

2School of Computer and Information Sciences, University of Hyderabad, Hyderabad 500046, India

3Machine Intelligence Research Labs, Scientific Network for Innovation and Research Excellence P.O. Box 2259, Auburn
Washington 98071-2259, USA

E-mail: slssp@uohyd.ernet.in

Abstract: In this study, a scalable coprocessor for accelerating the Differential Evolution (DE) algorithm is presented. The
coprocessor is interfaced with PowerPC embedded processor of Xilinx Virtex-5 FX70T Field Programmable Gate Array. In
the proposed design, the DE algorithm module is tightly coupled with fitness function module to reduce communication and
control overhead. The fixed point DE algorithm is implemented in the coprocessor whereas both fixed and floating point DE
are implemented in the embedded processor. Performance of the coprocessor is evaluated by optimising benchmark functions
of different complexities. The implementation results show that the coprocessor is 73.14-160.2x and 2.19-27.63x faster
compared to the software execution time of the floating and fixed point algorithm respectively. As a case study, spectrum
allocation problem of cognitive radio network is evaluated with the coprocessor. Results show an acceleration of 76.79-105x%
and 5.19-6.91x with respect to floating and fixed point DE in embedded processor. It is also observed that the application
occupies 56% of BRAM, 54% of DSP48E, 16% of slice LUTs and maximum frequency of operation as 63.55 MHz in a
Virtex-5 FPGA. This type of coprocessor is suitable for embedded applications where the fitness function remains unchanged.

1 Introduction

Differential evolution (DE) algorithm is an evolutionary
computation method and has been applied in diverse
domains of science and engineering applications [1]. DE
finds optimal values for a set of parameters by making
repeatedly pseudo-random changes to their values. The
number of parameters are referred as dimension of
the problem. After making changes, the algorithm evaluates
the fitness of the solution. DE algorithm became a popular
evolutionary algorithm because (i) it is simple to
implement, (ii) it has better performance in comparison
with other evolutionary algorithms (EA) and (iii) it has less
number of control parameters and less space complexity [2].
Most of the evolutionary techniques have been implemented
in a high end desktop computer/processors to solve
optimisation problems. The applications like motion
estimation [3], pole-placement design of infinite-impulse-
response filter [4], future generation evolvable machines [5]
use evolutionary algorithm to derive optimal solutions. These
applications generally uses low-performance microprocessors
with limited computational resources, rather than high-
performance desktop personal computers/processors to
execute the evolutionary algorithms. The time consuming
evolution process limits the use of evolutionary algorithms in

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

embedded applications. This leads to slow execution speed of
the algorithms in embedded processor. In order to meet the
real time execution speed requirement, one can either proceed
with the parallelisation of the algorithm or implement the
design onto the hardware. There are several hardware
platforms such as microcontrollers (uC), digital signal
processors (DSP), field programmable gate arrays (FPGA) and
application specific integrated circuits (ASIC) are used for
developing an embedded system. Platforms like pC and DSP
are revolving around firmware development using software
methodologies rather than development of hardware for the
application [6]. FPGA development platforms support both
hardware-based approach (system developed entirely in the
hardware) and processor-based approach (system developed
entirely in the firmware). It has the flexibility to customise the
hardware design by adding any combination of peripherals
and controllers which are not available in microcontroller or
DSP processor-based system. Owing to the above reasons,
recently evolutionary algorithms like particle swarm
optimisation (PSO), genetic algorithm have been implemented
in the FPGA [7, 8]. The execution time of the DE algorithm
increases with the increase in complexity of the function to be
optimised. Owing to this, DE algorithm is not suitable for
implementation in low end processors for real-time/online
applications involving complex optimisation. Thus there is an

221
© The Institution of Engineering and Technology 2013

www.ietdl.org

increasing demand to define an architecture and implement the
algorithm in the FPGA to meet the real-time execution speed
requirement. DE algorithm can be implemented in both
embedded processor and hardware using either fixed point or
floating point arithmetic. Although floating point DE will give
better accuracy but at the expense of high computation cost. In
embedded processor, floating point DE reduces the execution
speed approximately by 5-40x.

The objective of this work is to implement the DE algorithm
in the FPGA platform to accelerate the optimisation speed. This
paper focuses on only improving the speed of the optimisation
time and not to improve the quality of solutions. For improving
the quality of solution different variants of DE algorithm can be
explored. The DE algorithm has three major computational
operations (i) random number generation (RNG), (ii)
objective function evaluation and (iii) updating the solution.
For optimising a simple testbench function (Rosenbrock), the
profiling result of DE algorithm shows that RNG and the
optimisation algorithm (except the fitness function
evaluation) consumes 90% of the total execution time.
However, for complex functions of higher dimension, this
might change, that is, 60% of execution time is for
evaluating the Shifted Schwefel’s fitness function. Li et al
[8] have suggested a hardware software co-design method for
implementing the PSO algorithm. We have observed that
while optimising the fitness function like Shifted Schwefel’s
in the co-design platform, where fitness function is evaluated
in the software and the remaining part of the algorithm is
implemented in the hardware, the bus communication time
is ~106 ms. In contrast, if the complete DE algorithm along
with fitness function is implemented in the hardware, it takes
~128 ms. This concludes that bus communication overhead
is dominating (i.e. 82.8%) the overall hardware execution
time. This is observed when the embedded processor was
operating at 200 MHz. To reduce the bus communication
overhead, the total DE algorithm including the fitness
function evaluation can be implemented in the embedded
processor of the FPGA. This approach may result to a
marginal acceleration in optimisation time. Both these
approaches will not give any additional improvement in
terms of the execution speed. So the alternate choice is to
implement both the algorithm and fitness function evaluation
in the hardware and use it as a dedicated coprocessor. For
accelerating the computational intensive operations
coprocessor based dedicated accelerators have been used [9].

In this work, a dedicated coprocessor for DE algorithm is
developed and integrated with the embedded processor
(PowerPC 440) to solve optimisation problems including
spectrum allocation (SA) in cognitive radio network [10].
The proposed coprocessor is scalable in terms of the
optimisation parameters, maximum number of iterations
(Gmax), population size (NP) and dimension (D). In the
proposed design, both the fitness function evaluation and

DE algorithm are in a single module rather than in two
different modules. The software execution time of both
arithmetic of DE algorithm is evaluated and compared with
the hardware execution time of the algorithm.

The rest of the paper is organised into ten different sections.
Section 2 presents existing literature about FPGA
implementation of evolutionary algorithms. Section 3
presents brief introduction about DE algorithm and its
software profiling is described in Section 4. The proposed
hardware architecture for the DE algorithm is described in
Section 5. Section 6 presents system on chip
implementation of the DE coprocessor with auxiliary
processor unit (APU) interface details. Section 7 presents
the experimental setup. Section 8 describes results and
analysis of DE coprocessor and Section 9 presents SA in
cognitive radio as a case study of real-time application of
DE coprocessor followed by conclusions in Section 10.

2 Related works

In literature, different evolutionary algorithms have been
implemented using FPGA as shown in Table 1. A
customised intellectual property (IP) of genetic algorithm
was implemented in the Xilinx FPGA and integrated with
PowerPC 405 processor based system on chip (SoC) and
the speed enhancement up to 5.16%X was achieved in
Virtex-II Pro development kit [7]. A modular co-design
architecture was developed for PSO algorithm [8], in which
particle positions were updated in hardware whereas the
fitness function was evaluated on a Nios-II embedded
processor. Owing to this approach, the design had a
flexibility to modify the fitness functions in the software
depending on the applications. With this approach various
embedded applications can be developed simply by
changing the objective function. This design achieved
speedup of 20x in Altera development kit. Hardware
architecture of pipelined PSO (PPSO) was developed along
with the parallel PSO (pPSO) framework which consists of
multiple Nios-I. processors using system-on-a-
programmable-chip (SOPC) methodology and resulted
speedup of 98x compared to the software implementation
of the PSO algorithm in Altera development kit [11]. A
modular, flexible and reusable multi-swarm PSO parallel
hardware architecture was proposed to overcome the
drawbacks of software implementation of the PSO
algorithm wusing a freescale microcontroller and Xilinx
MicroBlaze soft processor core [12]. A hardware accelerator
for pPSO algorithm was reported and validated its
performance by optimising test bench functions on
MicroBlaze processor-based SoC in a Virtex-6 development
kit [13]. Apart from the above works, different variants of

Table 1 Review of existing literature on FPGA implementation of evolutionary algorithms

Work Algorithm Processor freq, MHz IP freq (max freq) in MHz Speedup Target Board

[7] GA PowerPC (200) 50 (50) 5.16x Xilinx Virtex Il Pro

[8] PSO Nios-ll (50) 50 (50) 20x Altera DE2-70

[11] PSO 4 Nios-Il (50) 50 (76.3) 98x Altera Stratix

[12] PSO Freescale (25) 25 (-) 359x —653x MC9S12DP256B
MicroBlaze (25) 25 (42.5) and 25 (29.8) 37x-52x Xilinx Virtex-Il PRO &SP3E

[13] PSO MicroBlaze (200) —(233) 18x -135x Xilinx Virtex-6

[20] floating point DE PPC440 (200) 50 (120.6) 200 x Virtex-5FXT

proposed work fixed point DE PPC440 (200) 33 (65) 80x -150x Virtex-5FXT

222
© The Institution of Engineering and Technology 2013

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

www.ietdl.org

Algorithm 1
Step 1: Read the control parameter values of the DE algorithm : scale factor F, crossover rate

CR, maximum number of iterations Gy 4x and the population size NP from user.

Step2: Set the generation number Gen=0 & randomly initialise population of NP individuals

for i=1 to NP //do for each individual sequentially do
for j=1 to D //do for each individual sequentially do

X_f_?: minH(Xmaz-Xmin)*rand();//each individual uniformly distributed in the range

[Rreis e | ARHIERE N = T ST L X0 sl pmGE pman. . omae |
end for
end for
Step 3:

while the stopping criterion is not satisfied OR Gen< Gy 4x do
for i=1 to NP //do for each individual sequentially do

Step 3.1: Mutation Step

Generate a mutant vector %(G)={vﬁ-, ?.!g__i} corresponding to the ith target vector Xt-(G)
via the differential mutation scheme of DE as:V,'?) = X© 4+ Fx(X© - X©)
Vector indices r1, r and r3 are randomly chosen, where 7y, 75 and r3 {1,...,N P}

Step 3.2: Crossover Step

Generate a trial vector UfG)={-u(1ff), u(;g,)} for the ith target vector ng) through

binomial crossover in the following way:

if (rand; ;[0,1] < CR or j = jrana), then

(G) _ . .(G)
Uji® = Uy
else

(G)_, .(G)
endif

Step 3.3: Selection Step
Evaluate the trial vector U'Y: if f(UY) < f(X!?), then
(G2 (@)
else
X (@D (@)
endif
end for
Step 3.4:Increase the Generation Count: Gen = Gen + 1

end while

Fig. 1 Pseudo-code for the differential evolution algorithm

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234 223
doi: 10.1049/iet-cdt.2012.0109 © The Institution of Engineering and Technology 2013

www.ietdl.org

Table 2 Benchmark functions used for performance analysis

No. Function name Dimension Optimal fitness
value

Fun1 Rosenbrock 2 0

Fun2 Goldstein 2 3

Fun3 sphere 3 0

Fun4 variably 4 0
dimensioned

Funb shifted sphere 32 0

Fun6 shifted Schwefel’s 32 0

Table 3 Control parameters of the DE algorithm

Control parameters Value

population size (NP) 8, 16, 32

total number of independent runs (Gyax) 1, 50, 100

dimension (D) 8, 16, 32

weighting factor (F) 0.9

crossover rate (CR) 0.9

PSO algorithms were implemented on a FPGA without
addressing the acceleration of execution speed [14-19].

Recently the authors have proposed a floating point
implementation of DE algorithm in the SoC, and reported
that the DE IP core running at 50 MHz accelerates the
execution speed approximately by 200x compared with its
equivalent software implementation on a PowerPC 440
processor [20]. Since, there is no work reported in the
literature which implements fixed point DE algorithm as a
coprocessor suitable for embedded applications. In this
work, we have developed a coprocessor for DE algorithm,
interfaced with the PowerPC embedded processor and
tested its performance by solving mathematical test bench
functions and a practical SA problem.

3 DE algorithm

Basic DE algorithm has three major steps, (i) reading control
parameter values, (ii) initialisation of population and (iii)
mutation, crossover and selection process. The complete
pseudo-code of DE algorithm is given in Algorithm 1 (see
Fig. 1). The performance of DE coprocessor is tested by
optimising a set of numerical test bench functions as
tabulated in Table 2. These numerical functions (CEC 2005
[21] and CEC 2010 [22]) include four low dimension and
two high dimension functions. The DE algorithmic control
parameters are listed in Table 3.

4 Software profiling of DE algorithm

Software profiling of both the fixed and floating point DE
algorithm is carried out on Xilinx PowerPC processor [23]
with clock frequency set to 200 MHz. The profiling results
of three computational intensive modules of the DE
algorithm for different test functions with maximum
generations Gyax = 1000 and population size NP =8 are
tabulated in Table 4. From this table, it is observed that for
Funl floating point DE algorithm takes 4721 ms time in
contrast to fixed point DE, which takes 70 ms time for
execution. This is because of the complexities of floating
point arithmetic. In the embedded processor, floating point
unit (FPU) is used for all the floating point arithmetic
involved in the algorithm. From Table 4, it is also observed
that all the test functions (except Fun6 function) takes less
time for evaluation. The value inside the parenthesis refers
to the % of total execution time that the particular module
requires during execution.

Table 5 compares the average execution time (in millisec)
and percentage of standard deviation (Std%) of execution
time for both variants of DE algorithm implemented in the
embedded processor (SW). The reported average and
standard deviations are for 20 independent runs. This table
shows results with maximum iterations Gyax =1, 50, 100
and for different population sizes NP =81, 16, 32. This table
reveals that for optimising high dimension test functions,
fixed point software algorithm gives ~4.96-7.36 x
acceleration over the floating point software algorithm. For
optimising low dimensional functions the execution time
32-48.45x is faster compared to the floating point algorithm.

5 Hardware architecture of DE algorithm

The architecture of the DE algorithm is shown in Fig. 2. It has
seven modules, that is, memory initialisation, mutation,
crossover, selection, random number generator, fitness
evaluation and a control finite state machine (FSM) Module.
The FSM is shown in Fig. 3. It has idle, initialisation,
operation, waiting and reading states. In the idle state, all the
modules are in the reset condition. In the initialisation state,
FSM enables memory module when the inputs such as
maximum number of generations (Gyax), population size
(NP) and dimension (D) are made available. During the
operation state, control FSM enables internal modules
according to the different stages of the algorithm, that is,
crossover, mutation and selection. FSM will be in wait state
until the execution of current module is completed then it
will go to the next module for execution. In reading state,
FSM reads the fitness value and writes into the output register.

Table 4 Profiling results of the software (SW) DE algorithm (Guax = 1000, NP=8)

Test function DE algorithm Objective function RNG Float_operations
SW float, ms SW fixed, ms SW float, ms SW fixed, ms SW float, ms SW fixed, ms SW float, ms
Fun1 50 (1%) 30 (43%) 10 (0.21%) 10 (14%) 40 (0.85%) 30 (43%) 4621 (97.88%)
Fun2 60 (1%) 30 (43%) 60 (0.81%) 10 (14%) 40 (0.54%) 30 (43%) 7228 (97.83%)
Fun3 90 (2%) 30 (38%) 10 (0.19%) 10 (13%) 50 (0.93%) 40 (50%) 5220 (97.20%)
Fun4 50 (1%) 40 (44%) 20 (0.26%) 20 (22%) 40 (0.51%) 30 (33%) 7674 (98.58%)
Funb 1488 (5%) 1245 (69%) 294 (0.97%) 255 (14%) 520 (1.72%) 303 (17%) 27 944 (92.38%)
Fun6é 1824 (6%) 1330 (29%) 3640 (11%) 2983 (64%) 570 (1.72%) 334 (7%) 27 042 (81.75%)

224
© The Institution of Engineering and Technology 2013

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

www.ietdl.org

Table 5 Execution time of the DE algorithm implemented in software

Test GMAX NP=8

NP=16 NP=32

function
Float SW, Fixed SW, Acceleration Float SW,

Fixed SW, Acceleration Float SW, Fixed SW, Acceleration

ms (Std%) ms (Std factor ms (Std%) ms (Std%) factor ms (Std%) ms (Std%) factor
%)

Fun1 1 4.91(3.2) 0.15(2.8) 32.73 9.44 (2.5) 0.26 (2.2) 36.31 18.36 (1.4) 0.52 (1.2) 35.31
50 181.05 5.38 (0.9) 33.65 332.37 (0.7) 9.69 (0.4) 34.30 641.81(0.4) 18.82(0.2) 34.10

(1.4)
100 363.17 10.38 (0.5) 34.99 673.21 (1.4) 19.33(0.4) 34.83 1301.32 (1.1) 37.51(0.2) 34.69

(1.1)
Fun2 1 8.01(1.9) 0.18(2.2) 44.50 15.02 (1.5) 0.31(2.3) 48.45 28.73 (0.8) 0.61(1.2) 47.10
50 264.53 5.97 (0.9) 44.31 491.39 (0.9) 10.85 (0.4) 45.29 940.12 (0.7) 19.82(0.2) 47.43

(1.4)
100 536.05 11.96 (0.5) 44.82 994.24 (0.9) 21.64(0.3) 4594 1897.45 (0.7) 39.26 (0.2) 48.33

(1.5)
Fun3 1 5.12(1.3) 0.16 (2.7) 32.00 10.13 (1.9) 0.31(1.3) 32.68 19.88 (0.8) 0.61 (0.6) 32.59
50 199.54 5.83(0.6) 34.23 371.94 (0.4) 11.08 (0.3) 33.57 720.03 (0.2) 21.64(0.2) 33.27

(0.8)
100 397.91 11.62 (0.5) 34.24 740.14 (0.3) 22.08 (0.3) 33.52 1432.64 (0.2) 43.16 (0.2) 33.19

(0.8)
Fun4 1 9.99 (1.9) 0.23(2.2) 43.43 19.36 (0.9) 0.45 (1.2) 43.02 38.38 (0.5) 0.84 (0.6) 45.69
50 305.79 7.08 (0.4) 43.19 584.59 (0.3) 13.48(0.2) 43.37 1145.25 (0.1) 26.46 (0.2) 43.28

(0.6)
100 612.92 14.11(0.3) 43.44 1178.46 (0.5) 26.94 (0.2) 43.74 2304.13 (0.3) 52.77 (0.2) 43.66

(0.7)
Funb 1 41 (1.7) 6 (1.6) 6.83 81(1.2) 11 (1.5) 7.36 162 (1.2) 23 (1.5) 7.04
50 1132 (1.3) 207 (1.7) 5.47 2234 (2.1) 411 (1.6) 5.44 4439 (2.1) 809 (1.4) 5.49
100 2254 (0.8) 412 (0.9) 5.47 4435 (0.9) 825 (2.1) 5.38 8809 (1.1) 1638 (2.1) 5.38
Funé 1 85 (1.8) 15 (1.9) 5.67 170 (2.1) 30 (2.3) 5.67 339 (1.1) 62 (2.2) 5.47
50 2251 (1.2) 446 (1.1) 5.05 4472 (1.5) 884 (1.7) 5.06 8916 (2.3) 1736 (2.1) 5.14
100 4476 (1.3) 891 (2.1) 5.02 8745 (1.3) 1764 (1.1) 4.96 18483 (0.9) 3537 (1.1) 5.23

Tck RmtlSIm J:?_\m[M:ﬂl NIISI:(H ulsnm
2-bit

Addr[11:0]
A

]
1
1| =
: Z RNG_num - C
i a T’\ Initialisation Init_En
A s1 0
g
i
s n
i = Mut_En "
: Mutation $3
: r
' ~
1 Tutant_vec[31:0]
. 1 Lppwne 0
g 1|2 E ST Cr En I
2 1 e 2 . =
2@ 1| = E | ropaa Crossover §
g = 2 |P-
g = ! .
& £ |Eiteval En | rial_vee[31:0] [iteval En
= H = S
= H % §
s 112 K [31:0] > S5 M
- M Selection _
E™ Fit_Data Selectio Sel Fn
1
1
i Best_pop[31:0]
1
DE Core i
[

Fig. 2 System architecture of DE algorithm

5.1 Initialisation module

The architecture of initialisation module is shown in Fig. 4.
The memory module has two separate memories, one is for
storing the population values (population memory) and
other is for storing their corresponding fitness function

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

values (fitness memory). During the initialisation state,
population values of all the particles (i.e. of size NP x D)
are randomly generated within the range of [Xuin, Xmaxl»
and stored in the population memory of size 4kbytes. The
population values are accessed from the population memory
by using a 12 bit address. Each population member is of

225
© The Institution of Engineering and Technology 2013

www.ietdl.org

10

Fig. 3 FSM diagram of DE algorithm

dimension D (number of variables) and each variable is of
size 32 bits. The maximum values of NP and D are set to
32. These values are input to the fitness evaluation module
and after evaluating the fitness function the fitness values
(of size 32 bit) are stored in the fitness memory of size 1

kbit. This process is repeated for all the population members.

5.2 Mutation module

After the population is initialised, mutation operation is
performed by the mutation module. A mutant vector is
generated for every target vector from the current
population. In this module a mutant vector of size 128
bytes is generated for each population member. Three
distinct vector indices ry, r, and r3 are generated in the
range of 1 to NP by comparing the counter value with
the value of multiplier. These indices are connected to the
select lines of a multiplexer (MUX) unit. Three distinct
target vectors each of size 1 kbits are obtained from the
MUX unit as shown in Fig. 5. Then the mutation operation
is performed by difference of any two of these selected
three vectors scaled by a factor F' and this difference is
added to third one to obtain the mutant vector of size 256
bytes. A mutant vector is generated for all the population
member of all dimensions.

5.3 Crossover module

The crossover operation is mainly responsible to increase the
diversity among the mutant vectors. A trial vector is generated
from the output of crossover module with a crossover
probability CR as shown in Fig. 6. This crossover rate

Gugl31:01 ot g Addr|11:0]
32-hit
NP[31:0] . P lati Fitness
TR 32-bit Adder |131:0] 4 I
Dj3t:0] Xmin [31:0]) Memory Memory
Clock - Subtractor [#-bib) Multiplier j -lKB\'Ee‘s 1 Kbit
| S el
Loit_Fo 32-bit Fiteval En_| Fitness Eval
Module
Fig. 4 Initialisation module
. RegFile { _ S .
= Enable r 1
] 1 I
=] 1 1
L & I, 1
[
— E‘fu I') F
Pop_Data |), 31:0 - : Subtract
31:0 4 - 1 or {} 1
sl 7] |- LA 7B
3 i Tl N E . = Multipli
Reset | E l._.%b - ! s i
3 H 2
I { 5 43
Mut Enj o ! =7
1 31:0 = 1 1 =
rl r2 r3 = IN 2
< 31:0]
] Dela :> Adder :> 3 = >
g —/ y V| S =
: I Mutant_vec
1 1]l = 2
s ;
—= Multiplier 2-bit .
. 7
Comparator 32-bit
Unit
< .
7 8-bit Counter |e—
32-bit Enabld

Fig. 5 Mutation module

226
© The Institution of Engineering and Technology 2013

RNG_num NP

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

il",n able

Pop Data
|]31:0] >

w
g [Trial_vec
Y g X =
2 2=
- I
Mutant_vec E==
C [31:0] > = s4

Mutant

(‘_‘]OCE‘ Vector Index
g 32-bit
Reset H LA - . 5
= s
Cr_En E i im
" £ g
RNG_num 2 - : 5. =R
= e
= -
D = |32-bit
-
32-bit ~~
RNG_numn

Fig. 6 Crossover module

controls the diversity of the population and helps the
algorithm to escape from the local optima [1, 2], and
ensures that the trial vector obtains at least one vector from
the mutant vector. The register Regl has a random number
stored in it. The output of Regl and CR are input to the
comparator 2 module. The multiplier output and index of
population member are input to the comparator Regl. The
output of both comparator 1 and 2 are input to a logic OR
gate. The output of crossover module is either the mutant
vector or the population vector as selected by the MUX unit.

5.4 Selection module

The output of crossover module is the trial vectors. These are
input to the selection module as shown in Fig. 7. The fitness
value of trial vector is evaluated by using the fitness
evaluation module and if it is less than the fitness of the
current population member then it selects the input as trial
vector else the current population member is selected as the
new population member. The output of MUX is the
updated value of the current population memory. This
process is repeated for all the iterations to improve the

Enable -,
Pop Data g
[[31:0] > s Best_pop
&3m0
Trial_vec =
L [31:0 & S5 o
Clocl_\" L,
Reset FFun:lclu?n
g Comparator
Sel_En Module
—
— 32-bit P
Fiteval_En 432-bit
Trial Vector "
Fitness Reg 4
32-bit
From Fitness

Memory

Fig. 7 Selection module

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

www.ietdl.org

fitness of individuals and the process is stopped when the
maximum number of generations is reached.

5.5 Fitness evaluation module

This module evaluates the fitness of each individuals. The
fitness of each population and the population members of
the complete population is evaluated and stored in the
fitness memory. For different functions/applications, only
the fitness module is modified.

5.6 RNG module

RNG module has great importance for the proper operation of
the DE. Here, a linear feedback shift register (LFSR) is used
for generating random numbers, as it is easy to implement and
it produces fairly good pseudo-randomness. This module
generates random numbers for the initial population
module, selection module, crossover and mutation modules.
The seed for random number generator is programmable
and it is initialised to a non-zero value. If all zero value
appears in the seed, then XOR operations continues to
generate zeros and output becomes always zero. The
architecture of 32 bit LFSR with maximum length
polynomial X**+X*2+X?+ X'+ 1 is shown in Fig. 8. This
module generates 2°*~1 random numbers.

6 Programmable system on chip (PSoC)
implementation of the DE algorithm

PSoC is a programmable integrated system that has
configurable processors, peripherals, memories, custom
intellectual peripherals on a single FPGA. The proposed
PSoC platform for implementing the DE algorithm is shown
in Fig. 9. PowerPC 440 (PPC440) processor communicates
with external peripherals such as double data rate
synchronous dynamic random-access memory (DDRZ
SDRAM), Block Ram memory (BRAM) controllers,
universal asynchronous receiver/transmitter (UART)
(RS-232), timer and interrupt controllers, joint test action
group (JTAG) controller, clock generator via processor local
bus (PLB). PPC440 is preferred over MicroBlaze processor
because of its high speed of operation and efficient resource
utilisation. DDR2 and BRAM controllers are used for storing
heap and stack of program and data. UART is used for serial
data transfer between the end user and processor. Timer and
interrupt controllers are used for profiling the application.
The clock generator provides necessary clock signals to all
the modules and peripherals. USB JTAG controller is used to
download the bitstream from host computer to FPGA board.
PPC440 is directly coupled to the APU controller, which
provides flexible high-bandwidth interface to DE
coprocessor via fabric coprocessor bus (FCB). The
coprocessor operates as an extension to the PowerPC. The
APU interface details is shown in Fig. 10.

6.1 DE coprocessor with APU interface

APU interface allows the coprocessor to execute extended
instruction set concurrently with PowerPC 440 embedded
processor instructions set. It provides various coprocessor
functions, such as a fully compliant PowerPC floating-point
unit [23], or other custom function implementing
algorithms appropriate for specific applications such as DE
and PSO algorithms. The APU controller interface along

227
© The Institution of Engineering and Technology 2013

www.ietdl.org

[I I I]

Shift Register
X1

Shift Register Shift Register Shift Register Shift Register
X2 X121 X22 X3z

(BB (e

Fig. 8 Random number generator

RNG_num

BRAM

»n

BRAM Controller g FCB Bus Fitness < DE
:""TR N PowerPC440 - - Evaluation CORE

L X - DE Co-Processor | UART |
II ﬁ TMC[T @

Fas S Fay t PLB Bus

-7 7 y AV.4 JTAG

Clock Generator

L 4

<

Timer —>| Interrupt DDR
33MHz (APU_CIk)

Profile Timer Virtex-5 FXT FPGA

Fig. 9 System on chip setup for DE algorithm

e ol plle e b T e s 1 e ikt gk s o ot el ol o oo b i oo gl kel |

1 Ly e e e e e e e, ,,—,———— I

1 . 1

b 11 Fabric Co-processor Module | DE IP Core e

> 1 1 1

! APU_FCM_INSTRUCTION K 1 i

T |APU_FCM_INST_VALID i i "

i »1APU_FCM_LOAD_VALID h i "

' *APU_FCM_DECODED 1 : Input_Data_En DE_Input_En : ! :

+——»{APU_FCM_LOAD_DATA ; > > Start _ H

1 >

- = ! : Input_EoD DE_Input_EoD : - H
128-bit APU_IP b * Input > Gyax, i
B " i ! Input_Data FIFO DE_Input_Datay_| NP ::
1 |FoM AU RESULT "1 32.Bit 32-Bit : - o i
bl FCM_APU_DONE L i
— FCM_APU_SLEEP_NOT_READY i . H D n
«———»{FCM_APU_LOAD_WAIT 1, Input_Data_Rdy DE_Input_Rdy + o
—! FCM_APU_RESULT_VALID - p : h

1 : 1 ' Y 1 : :

1] 1

- ' | DE DE |i:

PPC440 ; APU_CIk i L Wrapp Clock _ C il
T » €r » ore |!

i APU_Rst 'l N Reset _ H

: H :' i H

T—P|APU_FCM_INSTRUCTION 1 ! H

! »|APU_FCM_INST_VALID il) _Idle it

I JAPUFCM DECODED ¥ - ') H

FCM| ! t Data E DE_Ouput_En |} i

i |APU_FCM_LOAD_DATA WLl Ouput_Data_En LE_Ouput_ En ; <one ¥

) L 1 1 1

1 IP_APU 1 :DE_Oulpul_EoDl ‘ Valid E :

o 1 1
; 1 0“tput DE_Output_Data | Fitness : !
- -]

. FCM_APU_RESULT FIFO : + 1!
B FCM_APU_DONE 32-Bit | i
— FCM_APU_SLEEP_NOT_READY T i
“ »FCM_APU_LOAD_WAIT i
P i »|FCM_APU_RESULT VALID P2 Owipat MY 1 K

. i L

] 1 !

] 1 !

: ! H

' :____-_-____-_-__-_-__-_':

1]

!]

Fig. 10 APU interface diagram of differential evolution IP core
228 IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234

© The Institution of Engineering and Technology 2013 doi: 10.1049/iet-cdt.2012.0109

with fabric coprocessor module behaves as a coprocessor for
PPC440. Since, the APU is independent of the processor to
peripheral interface, it does not add an extra load to the
PLB bus. The PPC440 supports three primary types of
instructions to be used for APU [23]. In this work, load/
store instructions are used for accessing the APU, in which
maximum of 128 bits of data can be transferred in a single
clock cycle or it can be transferred as four sets of 32 bits.
The details of interfacing the DE IP core with the
embedded processor is shown in Fig. 10. The FCB bus is
specifically targeted to host the DE coprocessor without
intervention of the processor instructions. The DE core
frequency is adjusted by the clock generator and set to 33
MHz. However, it can be increased up to maximum
frequency of IP core subject to maintaining the desired
clock ratio of processor to APU controller.

Fig. 10 has two asynchronous first in, first out (FIFOs)
(depth of four and width of 32 bits) interfaced at the input
and output of the DE core. The input signal is processed as
a stream and each stream has four samples and three of
which are used for Gyax, NP and D. The remaining
sample is used for checking whether the FIFO is 50% full
or not. In this architecture, ‘Output_Data’ and ‘Input_Data’
are two 32 bit width data buses for data input and output of
the IP core, respectively. The working principle of the DE
IP core is described as below.

1. PowerPC writes the input data Gyax, NP and D in three
clock cycles. The IP core receives data from the PowerPC,
till the FIFO is full. This is ensured by the control signal
‘Input_EoD’. When the FIFO is 50% full ‘Input_EoD’
becomes logical high.

2. When the FIFO is 50% full, it will enable ‘DE_Input_En’
as logical high, and when the IP core is ready for processing it
will give a handshaking signal ‘DE_Input_Rdy’ as logical
high. The FIFO sends the data to the IP core till
‘DE_Input_EoD’ is logical high.

3. When the IP core processes only single sample on the
stream, it gives ‘DE_Output_En’ as logical high and this is
acknowledged by the output FIFO with handshaking signal
‘DE_Ouput_Rdy’. When this logical signal is high then the
IP core sends the processed samples to the output FIFO till
‘DE_Output_EoD’ is high.

4. When the output FIFO is full, FIFO will send back the data
to APU of PowerPC processor.

The APU wrapper contains two different modules namely
IP_APU and APU_IP. The APU_IP module receives data
from the processor and sends it to DE IP, whereas the
IP_APU module receives the final solution from the DE IP

APU_Rst

www.ietdl.org

core and sends it to the processor (PPC440). The APU_IP
receives 128 bit signal, but the DE IP has only 32 bit width
input, so the IP receives a full set of data in four clock cycles.
Similarly the IP_APU module receives 128 bits of data from
the IP in four clock cycles. The APU wrapper is interfaced
with the IP core using six control signals ‘Input_Data_En,
Input_Data_Rdy, Input EoD, Output_Data_En, Output_
Data_Rdy, Output_EoD’. A FSM with five states, that is,
load, load_valid, store, store_valid and idle states control the
data flow between Processor, IP_APU and APU_IP.

7 Experimental setup

In this work, the basic DE algorithm is considered for
coprocessor implementation. The DE algorithmic
parameters are tabulated in Table 3. The DE software code
is ported into the PPC440 processor using 32 bit fixed and
floating point C code, later algorithm is coded in Verilog
language for implementing in the hardware. An IP core for
DE algorithm is developed and simulated using Xilinx ISE
10.1, then a synthesisable IP core is developed and
subsequently a coprocessor is designed for accelerating the
DE algorithm. For functional verification, the wrapper logic
and the DE core are simulated using a test bench with code
coverage of 99.9% and the simulation results are shown in
Fig. 11 for Fun6 with Gyax=1, NP=8 and D=4. When
DE_Output_Rdy signal is logic high, the resultant fitness
value is available at DE_Output_Data port which is in fixed
point format. After logic high on DE_Output_Rdy signal,
DE_Input_Rdy is high because of scheduling for next set of
Gmax, NP and D values. From the results it is observed
that the IP core consistently giving the same results.

The IP core frequency is set to 33 MHz and connected to
PPC440 of Xilinx Virtex-5 FPGA using tightly coupled
APU controller interface. The performance of the
coprocessor is evaluated by optimising six numerical
benchmark functions used in CEC 2005 and 2010
competitions [21, 22]. Owing to the empirical nature of DE
algorithm, evolution parameters are subject to modification.
In the proposed coprocessor, population size (NP), number
of generations (Gyax) and dimension (D) can be modified
by the users through the embedded processor without
redesigning the hardware.

8 Results and analysis
8.1 Timing results

Initially, the complete DE optimisation algorithm is ported
into the PowerPC processor of Xilinx Virtex-5 FPGA for

APU_CIk TTIITPLULN _J'I_'U";ﬂﬂJ':ﬂJ'!_J'L'lﬂ IUUUUPUU U]

JUUUUUUuy Uy HIJJ;J'I_H.F UUTUUUuUuuu

DE_Input_En
DE_Input_EoD

DE_Input_Data &

DE_Input_Rdy I I

DE_Output_En

DE_Output_Data X (18174

DE_Output_EoD | i

DE_Output_Rdy | M

Fig. 11 Functional simulation of DE IP core

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

229
© The Institution of Engineering and Technology 2013

www.ietdl.org

Table 6 Timing results of DE coprocessor and its acceleration factor (AF) over floating and fixed point software execution time

Test function Guax NP=8 NP=16 NP=32
HW, ms (Std%) AF float AF fixed HW, ms (Std%) AF float AF fixed HW, ms (Std%) AF float AF fixed
Fun1 1 0.05 (1.1) 98.20 3.00 0.1(1.4) 94.40 2.60 0.2 (1.0) 91.80 2.60
50 2.13(1.2) 85.00 2.53 3.90.7) 85.22 2.48 7.6 (0.2) 84.45 2.48
100 4.27 (1.0) 85.05 2.43 8.21 (1.5) 82.09 3.94 15.2 (0.2) 85.61 2.47
Fun2 1 0.05 (1.5) 160.20 3.60 0.1(1.3) 150.20 3.10 0.2 (1.4) 143.65 3.05
50 2.23(1.2) 118.62 2.68 4.06 (0.5) 121.03 2.67 7.8 (0.3) 120.53 2.54
100 4.43 (0.7) 121.00 2.70 8.11 (0.5) 122.59 2.67 15.6 (0.2) 121.63 2.52
Fun3 1 0.07 (1.1) 73.14 2.29 0.13 (1.8) 77.92 2.38 0.26 (1.3) 76.46 2.35
50 2.6 (1.1) 76.75 2.24 4.9 (0.5) 75.91 2.26 9.57 (0.3) 75.24 2.26
100 5.3 1.1) 75.08 2.19 9.9 (0.6) 74.76 2.23 19.06 (0.2) 75.16 2.26
Fun4 1 0.08 (1.6) 124.88 2.88 0.15 (1.9) 129.07 3.00 0.3 (0.9) 127.93 2.80
50 2.9 (1.2) 105.44 2.44 5.4 (0.7) 108.26 2.50 10.5 (0.3) 109.07 2.52
100 5.8 (1.2) 105.68 2.43 10.9 (0.7) 108.12 2.47 21.1(0.6) 109.20 2.50
Funb 1 0.5 (0.8) 82.00 12.00 0.8 (0.3) 101.25 13.75 1.6 (0.2) 101.25 14.38
50 11.9 (0.2) 95.13 17.39 23.5(0.1) 95.06 17.49 46.6 (0.1) 95.26 17.36
100 23.7 (0.1) 95.11 17.38 46.7 (0.1) 94.97 17.67 92.6 (0.1) 95.13 17.69
Funé 1 0.6 (0.6) 141.67 25.00 1.2 (0.3) 141.67 25.00 2.3(0.2) 147.39 26.96
50 16.4 (0.4) 137.26 27.20 32.4 (0.1) 138.02 27.28 64.5 (0.1) 138.23 26.91
100 32.6 (0.5) 137.30 27.33 64.4 (0.1) 135.79 27.39 128 (0.1) 144.40 27.63

software implementation, then the complete DE algorithm is
executed using the DE coprocessor. The execution time of the
DE algorithm for different population sizes (8, 16, 32) and for
three different generations (1, 50, 100) is evaluated for 20
independent runs. The average execution time of the
algorithm using the coprocessor is tabulated in Table 6 and
this is referred as hardware (HW) time. The acceleration
factor (AF) of the coprocessor with respect to software
floating and fixed point execution time are tabulated as AF
(float) and AF (fixed), respectively. The values in
parenthesis refer to the percentage of standard deviation of
execution time. From this table, it is observed that the
coprocessor execution time is up to 73.14-160.20% faster
than the software execution time for floating point DE
algorithm. In contrast, it is only 2.19-27.63x faster
compared with fixed point DE algorithm. Further it is

140
120:7 * ®Float_Fix
100 -+
= Float_Hw
80
&5 # Fix_Hw
T 60 4
<& 40 4
20
0 -+ = - - - — - = - Fd /:

Funl Fun2 Fun3 Fun4 Fun5 Fun6

Fig. 12 Average speedup for benchmark functions

Table 7 Resource utilisation

observed that for lower dimension functions coprocessor
acceleration AF (fixed) is small as compared to higher
dimension functions. This table also reveals that the
execution time of HW coprocessor for different functions is
scaling up with the population size and maximum number
of generations. A comparison of the average speedup of
floating to fixed, floating to hardware and fixed to hardware
implementations for different benchmark function (Gyax =
100 and NP =8) are illustrated in Fig. 12.

8.2 Synthesis results

The hardware IP is designed with multiple modules using
Verilog language and the code size is ~1000 lines. It is
parameterised in terms of DE population size (NP),
dimension (D) and maximum number of generation Gyax.
Table 7 shows XST (Xilinx Synthesis Tool) synthesis
results (resource utilisation) for optimising different
benchmark functions with population size NP=32. The
targeted FPGA is Xilinx Virtex-5 XC5VFX70T. It has
several device primitives like BRAM, DSP48E, Slices and
LUTs. Each BRAM is of 36 kbits size. It can be configured
as two separate memories of 18 kbits size each. DSP48E
slice is a digital signal processing logic element and it can
perform multiply-accumulator, multiply-adder, one or n-step
counter along with logic operations such as AND, OR and
XOR. Slices are combination of LUTs and flip flops, used
for implementing the digital logic of desired IP. For higher
dimensional test bench functions 6% Block RAM (BRAM)
is utilised compared with other functions. The resource
utilisation for the Fun2 (60% of DSP48E, 7% of Slice

Test function BRAM DSP48E Slice registers Slice LUTs Slices LUT FF pairs Max freq, MHz
Fun1 3 (2%) 61 (47%) 2888 (6%) 3936 (8%) 1586 (14%) 1711 (33%) 39.33
Fun2 3(2%) 77 (60%) 3150 (7%) 7315 (16%) 2546 (22%) 2152 (25%) 36.04
Fun3 3 (2%) 20 (15%) 3097 (6%) 3928 (8%) 1522 (14%) 2031 (40%) 67.04
Fun4 3 (2%) 61 (47%) 2883 (6%) 4065 (9%) 1625 (14%) 1688 (32%) 60.56
Funb 10 (6%) 42 (32%) 2849 (6%) 3667 (8%) 1317 (11%) 1890 (40%) 64.67
Fun6é 10 (6%) 41 (32%) 2886 (6%) 3753 (8%) 1485 (13%) 1682 (33%) 64.72
SA 84 (56%) 70 (54%) 4892 (10%) 7371 (16%) 2968 (26%) 2731 (28%) 63.55
230 IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234

© The Institution of Engineering and Technology 2013

doi: 10.1049/iet-cdt.2012.0109

registers, 16% of LUTs and 22% of Slices) is high compared
with other functions due to its computational complexity.

9 Real-time application as a case study: SA in
cognitive radio

In the current wireless communication domain, spectrum
scarcity is because of the rigid licensing policy [24].
Dynamic SA is an alternative to overcome this problem.
Cognitive radio is the future technology which supports the
dynamic SA [25]. In the cognitive radio domain there are
two different type of users (a) primary user or licensed user
and (b) secondary user or unlicensed user. A primary user
has the priority to use an allotted spectrum band, however,
in the absence of primary user, a secondary user can access
the same band till a primary user demands for it. In the
distributed network architecture, each secondary user
determines the spectrum availability and allocate the desired
spectrum. In this scheme, a secondary user considers the
locally available information from the neighbourhood users
and decides spectrum assignment.

As each secondary user implicitly have an embedded
computing platform, the SA task can be performed by it.
However, running the SA on an embedded processor
consumes most of the platform resources, thereby degrading
the performance of other applications running on it. Hence,
there is a requirement for a dedicated hardware peripheral
for performing the SA task. This is the motivation for
choosing this application as a case study in this work. This
problem is posed in [10] and have been solved by using
genetic, quantum genetic and PSO algorithms. In this paper,
the same problem is solved by using the developed DE
hardware coprocessor regarding execution speedup and
acceleration factor.

The general SA model consists of a channel availability
matrix (L) representing the channel availability, L = {/, |l
m€1{0, 1}} 2, where [,,,=1 if and only if channel m is
available to user n, else /,,,=0, channel reward matrix (B)
representing the channel reward, B={b, ,,} NxM , where
b, represents the reward that can be obtained by the user
n that uses channel m, and an interference constraint matrix
(C) representing the interference constraints among the
secondary users (n and p), C={c,,m|cspmnbelongs to {0,
1}y « v « a Where ¢,,,,,= 1 if both the secondary users n
and p use the channel m simultaneously else ¢, ,,, =0 [10].
The required solution is a conflict free channel assignment
matrix 4 = {a, |a, » belongs to {0, 1}} s, wWhere a,,,= 1
if channel m is allocated to secondary user n, else a,,,,=0
[10, 26]. In this work, the reward matrix and constraint
matrix are initialised as [26].

In real time applications, users perform network-wide SA
operation faster than the change in spectrum environment.
In this work, the assumption is that the location, available
spectrum etc. are static, thus L, B and C remains constant
during a particular allocation period. As the SA model can
be inherently seen as an optimisation problem, so the DE
algorithm is proposed to solve the allocation problem. The
proposed architecture for DE algorithm is exploited to
select the appropriate channel for secondary users from the
available channels without interfering with the primary
users. The conflict free spectrum assignment matrix 4 must
satisfy the interference constraints defined by C

if Cn,p,m=1> Vi<n, p<N,1<m<M
ey

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

www.ietdl.org

The above equation states that if the constraint c,, ,, ,, = 1 then
one of the secondary user between n and p can use the
channel m depending on the reward value of the user. If the
user n has more reward than user p, then the channel m will
be used by the user n and vice versa. For the given L and
C, the objective of SA is to obtain the conflict free channel
assignment matrix by maximising the reward sum U(R).
Thus the optimal conflict free channel assignment matrix
A* is selected from the set of conflict free channel
assignment for a given set of N users and M spectrum
bands and constraints C as shown in (2)

A* = argmax U(R))

AEALC)y

For improving the efficiency of SA one or more fitness
functions need to optimised. In this work, maximum sum
reward (MSR) is considered as the fitness function to
validate the hardware framework. MSR is defined as [10]

N M
MSR:UR) =Y " a,,b,, 3)

n=1 m=1

In the proposed SA scheme, each population specifies a
possible conflict free channel assignment matrix. To
decrease the search space, we propose to encode only the
elements that corresponds to /,,,=1. The length of the
population is equal to the number of elements equal to 1 in
the L. The value of every element in the population is
randomly generated that satisfies interference constraints C.

The proposed DE-based SA algorithm proceeds as follows:

L. Given L={l, by €10, 1}hywrn B={bunlbym€ 0,
I3 ivxar and C={c, pmlCrpm €10, 1}}nxnxp» set the
dimension of the population as D=3}, > 1, ,, and
set Ly ={(n, m)|l,, ,,=1} such that the elements in L, are
arranged in ascending order with # and m.

2. Randomly generate the initial population X =[x, ...,
X34 ..., Xp;] Wherex,; €0,1,i€(1... NP)andd (1, ..., D).
3. Map the population x,; to a,,,,, where (n, m) is the dth
element of L, for all del, ..., Dand i€ (1, ..., NP). The
complete 4 matrix should satisfy the constraint matrix C, if
any violations are there then one of the user will get the
channel m depending on their reward value and the
corresponding element of the matrix A4 is set to 1 or 0.

4. Compute the fitness of the each individual of the current
population.

5. Carry out the mutation, crossover, selection and update the
population as defined in Algorithm 1 (see Fig. 1).

6. If it reaches the predefined maximum generation then
derive the assignment matrix as mentioned in the step 3 and
stop the process else go to step 3 and continue.

Both the fitness function and DE algorithm are evaluated in
the coprocessor. Here, the algorithmic parameters (Gyiax,
NP) and the SA parameters such as number of secondary
users N, number of channels M and number of primary
users K are parameterised and can be changed through the
embedded processor. The execution time for evaluating the
SA both in the embedded processor (software) and in the
coprocessor is executed for 20 independent runs. Table 8
shows the software execution and acceleration factor for
both arithmetic implementation. Table 9 shows the
coprocessor execution time (HW) and acceleration factor w.
r.to both arithmetic of algorithms executed in the processor.

231
© The Institution of Engineering and Technology 2013

www.ietdl.org

Table 8 Execution time of SA problem in software

Test GMAX NP=8 NP=16 NP=32
function
Float Fixed Acceleration Float Fixed Acceleration Float Fixed Acceleration
SW, ms SW, ms factor SW, ms SW, ms factor SW, ms SW, ms factor
(Std%) (Std%) (Std%) (Std%) (Std%) (Std%)
MSR(5 x 1 42 (0.5) 2.2 (0.8) 19.09 82 (0.7) 4.3 (0.8) 19.07 163 (0.4) 8.3(0.5) 19.64
5x5) 50 1068 63 (0.3) 16.95 2011 125 (0.4) 16.09 4113 248 (0.3) 16.58
(0.3) (0.3) (0.1)
100 2008 127 (0.2) 15.81 4052 251 (0.3) 16.14 7820 497 (0.2) 15.73
(0.2) (0.1) (0.1)
300 5786 381 (0.1) 15.19 11276 757 (0.1) 14.90 22 364 1498 14.93
(0.4) (0.4) (0.2) (0.1)
MSR(10 x 1 150 (0.3) 10.1 (0.8) 14.85 296 (0.5) 19(0.7) 15.58 589 (0.2) 37 (0.4) 15.92
10 x 10) 50 4286 266 (0.6) 16.11 8583 524 (0.3) 16.38 17 083 1034 16.52
(0.3) (0.3) (0.2) (0.2)
100 8326 536 (0.4) 15.53 16 598 1059 15.67 35012 2074 16.88
(0.1) (0.3) (0.4) (0.5) (0.2)
300 24 868 1614 15.41 49 823 3216 15.49 100 154 6335 15.81
(0.2) (0.1) (0.2) (0.2) (0.3) (0.2)
MSR(20 x 1 654 (0.5) 53 (0.4) 12.34 1287 100 (0.3) 12.87 2586 192 (0.4) 13.47
20 x 20) (0.3) (0.7)
50 15028 1298 11.58 29 925 2586 11.57 58 974 5140 11.47
(0.4) (0.4) (0.2) (0.1) (0.2) (0.1)
100 29 890 2614 11.43 60 120 5135 11.71 120 036 10 161 11.81
(0.2) (0.4) (0.3) (0.3) (0.4) (0.1)
300 91086 7906 11.52 180 210 15583 11.56 359 860 31189 11.54
(0.2) (0.3) (0.1) (0.4) (0.3) (0.2)
Table 9 Execution time of SA problem in coprocessor
Test function Guax NP=8 NP=16 NP=32
HW, ms AF float AF fixed HW, ms (Std%) AF float AF fixed HW, ms AF float AF fixed
(Std%) (Std%)
MSR(5 x 5 x 5) 1 0.4 (0.3) 105.00 5.50 0.8 (0.7) 102.50 5.38 1.6 (0.4) 101.88 5.19
50 11 (0.3) 97.09 5.73 22 (0.3) 91.41 5.68 43 (0.2) 95.65 5.77
100 22 (0.2) 91.27 5.77 43 (0.2) 94.23 5.84 85 (0.2) 92.00 5.85
300 66 (0.1) 87.67 5.77 129 (0.1) 87.41 5.87 254 (0.1) 88.05 5.90
MSR(10 x 10 x 10) 1 1.7 (0.5) 88.24 5.94 3.4 (0.3) 87.06 5.59 6.7 (0.2) 87.91 5.52
50 44 (0.4) 97.41 6.05 87 (0.2) 98.66 6.02 172 (0.1) 99.32 6.01
100 87 (0.3) 95.70 6.16 172 (0.3) 96.50 6.16 340 (0.1) 102.98 6.10
300 262 (0.1) 94.92 6.16 515 (0.2) 96.74 6.24 1012 (0.1) 98.97 6.26
MSR(20 x 20 x 20) 1 8.1 (0.3) 80.74 6.54 15.6 (0.2) 82.50 6.41 30.5(0.2) 84.79 6.30
50 194 (0.2) 77.46 6.69 385 (0.1) 77.73 6.72 768 (0.1) 76.79 6.69
100 385 (0.4) 77.64 6.79 762 (0.1) 78.90 6.74 1518 (0.1) 79.08 6.69
300 1156 (0.2) 78.79 6.84 2277 (0.2) 79.14 6.84 4512 (0.1) 79.76 6.91
Table 10 Execution time (in Mega Clock cycles) for SA problem in embedded processor (SW) and Coprocessor (HW)
Test function Gmax NP=8 NP=16 NP=32
Float SW Fixed SW HW Float SW Fixed SW HW Float SW Fixed SW HW
MSR(5 x 5 x 5) 1 8.41 0.44 0.08 16.4 0.86 0.16 32.62 1.66 0.32
50 213.6 12.6 2.2 402.2 25.0 4.4 822.6 49.6 8.6
100 401.6 25.4 4.4 810.4 50.2 8.6 1564.1 99.4 17.0
300 1157.2 76.2 13.2 2255.2 151.4 25.8 4472.8 299.6 50.8

The value parenthesis refers to the % of standard deviation. In
these tables MSR (N x M x K) corresponds to the maximum
sum reward for N number of secondary users, M number of
channels and K number of primary users.

From Table 8, it is observed that fixed point software
implementation gains acceleration of 11.43-19.64x over
floating point implementation. Table 9 shows that the

232
© The Institution of Engineering and Technology 2013

proposed DE coprocessor processing speed is ~5.19—
6.91 x faster than fixed point software implementation and
76.79-105x faster then floating point software
implementation in the embedded processor (PPC 440).
Table 10 tabulates execution time in terms of Mega clock
cycles for optimizing MSR (5 x 5% 5) objective function.
Fig. 13 shows the comparison of the average speedup of

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

100
90 4 ® Float_Fix
80 - ® Float Hw
70 E Fix_Hw

Average
Speed-up

10x10x10
MSR (N x M x K)

5x5x5 20x20x20

Fig. 13 Average speedup for SA problem

1050

1000

HW

— Y

950+

T w00-
z
&

8501

R

L
100 150

Generation

200

Fig. 14 Comparison of the convergence graph

floating to fixed, floating to hardware and fixed to hardware
implementations of SA problem with Gyax =300 and NP =
32 for three MSR (N XM X K) objective functions. It is
observed that AF for floating to fixed is ~11.53-15.8%
because of high computational complexity in both
arithmetic, but AF for coprocessor is 79.75-98.96x for
floating and 5.89-6.91x over fixed arithmetic because of
faster execution speed.

The algorithm is run for 20 independent runs with N =10,
M=10 and K=10 and the convergence graph is shown in
Fig. 14. In this graph, SW means result obtained using
PowerPC processor and HW means result obtained using
the DE coprocessor. Initially there is some difference
between the SW and HW results because of random
number generation in the hardware, but after some iterations
both attains almost same value. The curve shows that as
higher the reward value, the user will be alloted a fair
spectrum band. Table 11 tabulates the minimum, maximum,
average, standard deviation and percentage of standard
deviation of fitness value.

www.ietdl.org

10 Conclusions

In this paper, we have proposed a scalable coprocessor with
APU interface for accelerating the execution speed of the
DE algorithm and it was implemented in a Xilinx Virtex-5
FPGA. To avoid the bus overhead, the complete DE
algorithm with fitness function was implemented in the
hardware instead of partitioning the design into software
and hardware. To wvalidate the performance of the
coprocessor, firstly, six numbers of test-bench functions
were optimised, then a practical problem of SA was solved
using the coprocessor. For wvalidation of the proposed
framework the execution time for fixed point and floating
point software implementation of DE algorithm is compared
while optimizing test bench function and SA problem. The
experimental results revealed that the software
implementation of fixed point DE algorithm accelerated the
execution speed by approximately 43.19-45.69x while
optimising less complex test function (Fun4) and by 4.96—
5.67x while optimising the 32 dimension test function
(Fun6), as compared to the floating point D algorithm
implemented in the embedded processor. The fixed point
DE algorithm, along with the fitness evaluation, was also
implemented in the coprocessor and the experimental
results shown that an acceleration of approximately by 25—
27.63%x and 135.79-147.39x% is attained while optimising a
32 dimension Fun6 complex test function compared to the
fixed and floating point software implementation
respectively. For optimising less complex fitness functions
like Funl, the coprocessor attained speedup of
approximately by 2.43-3.94x over fixed point and 82.09-
98.20x over floating point software implementation
respectively. At the same time it was also observed that for
SA problem, the coprocessor attained an acceleration of
~76.79-105% and 5.19-6.91x compared to the floating
point and fixed point point implementation of the algorithm
in embedded processor, respectively. The proposed
framework can be extended for accelerating other
evolutionary techniques and can be used for designing
Evolvable Hardware.

11 Acknowledgment

The authors thank the University Grants Commission,
Government of India for providing necessary support.

12 References

1 Storn, R., Price, K.: ‘Differential evolution a simple and efficient
heuristic for global optimization over continuous spaces’, J. Global
Optim., 1997, 11, (4), pp. 341-359

Das, S., Suganthan, P.: ‘Differential evolution: a survey of the
state-of-the-art’, JEEE Trans. Evol. Comput., 2011, 15, (1), pp. 4-31
Hay, J., Loo, K.: ‘Fast motion estimation using evolutionary strategy
search algorithm’. Int. Conf. Digital Telecommunications, (ICDT’06),
August 2006, pp. 16

Table 11 Statistical results of quality of solution using the processor (SW) and coprocessor (HW)

Test function Min Max Avg (Std%)

SW HW SW HW SW HW SwW HW
MSR(5 x 5 x 5) 280 290 280 290 280 290 0 0
MSR(10 x 10 x 10) 914 942 1022 1047 986 1008 2.34 2.1
MSR(20 x 20 x 20) 2547 2614 2985 3034 2753 2847 3.14 2.87
IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234 233

doi: 10.1049/iet-cdt.2012.0109

© The Institution of Engineering and Technology 2013

www.ietdl.org

4

10

11

12

14

15

234

Pan, S.T.: ‘Evolutionary computation on programmable robust iir filter
pole-placement design’, /EEE Trans. Instrum. Meas., 2011, 60, (4),
pp. 1469-1479

Sekanina, L.: ‘From implementations to a general concept of evolvable
machines’. Proc. Sixth European Conf. Genetic Programming, (ser.
EuroGP’03), 2003, pp. 424-433

Abdelfatah, W.F., Georgy, J., Igbal, U., Noureldin, A.: ‘FPGA-based
real-time embedded system for RISS/GPS integrated navigation’,
Sensors, 2011, 12, (1), pp. 115-147

Fernando, P.R., Katkoori, S., Keymeulen, D., Zebulum, R., Stoica, A.:
‘Customizable FPGA IP core implementation of a general-purpose
genetic algorithm engine’, /EEE Trans. Evol. Comput., 2010, 14, (1),
pp. 133-149

Li, S.-A., Hsu, C.-C., Wong, C.-C., Yu, C.-J.: ‘Hardware/software
co-design for particle swarm optimization algorithm’, Inf. Sci., 2011,
181, (20), pp. 4582-4596

Zicari, P., Corsonello, P., Perri, S., Cocorullo, G.: ‘A matrix product
accelerator for field programmable systems on chip’, Microprocess.
Microsyst., 2008, 32, (2), pp. 53-67

Zhao, Z., Peng, Z., Zheng, S., Shang, J.: ‘Cognitive radio spectrum
allocation using evolutionary algorithms’, IEEE Trans. Wirel.
Commun., 2009, 8, (9), pp. 4421-4425

Farmahini-Farahani, A., Vakili, S., Fakhraie, S.M., Safari, S., Lucas, C.:
‘Parallel scalable hardware implementation of asynchronous discrete
particle swarm optimization’, Eng. Appl. Artif. Intell., 2010, 23, (2),
pp. 177-187

Tewolde, G.S., Hanna, D.M., Haskell, R.E.: ‘A modular and efficient
hardware architecture for particle swarm optimization algorithm’,
Microprocess. Microsyst., 2012, 36, (4), pp. 289-302

Rogrio, M.C., Nedjah, N., Mourelle, L.M.: ‘A hardware accelerator for
particle swarm optimization’ Applied Soft Computing, 2013 DOI
10.1016/j.as01.2012.12.034

Lin, C.-J., Tsai, H.-M.: ‘FPGA implementation of a wavelet neural
network with particle swarm optimization learning’, Math. Comput.
Model., 2008, 47, (910), pp. 982-996

Cavuslu, M.A., Karakuzu, C., Karakaya, F.: ‘Neural identification of
dynamic systems on FPGA with improved PSO learning’, Appl. Soft
Comput., 2012, 12, (9), pp. 27072718

© The Institution of Engineering and Technology 2013

17

18

19

20

21

22

23

24

25

26

Vasumathi, B., Moorthi, S.: ‘Implementation of hybrid ANN — PSO
algorithm on FPGA for harmonic estimation’, Eng. Appl. Artif. Intell.,
2012, 25, (3), pp. 476483

Munoz, D., Llanos, C., Coelho, L., Ayala-Rincon, M.: ‘Hardware
particle swarm optimization based on the attractive-repulsive scheme
for embedded applications’. Proc. Int. Conf. Reconfigurable
Computing and FPGAs, December 2010, pp. 55-60

Munoz, D., Llanos, C., Coelho, L., Ayala-Rincon, M.: ‘Hardware
architecture for particle swarm optimization using floating-point
arithmetic’. Proc. Ninth Int. Conf. Intelligent Systems Design and
Applications, December 2009, pp. 243-248

Munoz, D., Llanos, C., Coelho, L., Ayala-Rincon, M.: ‘Hardware
particle swarm optimization with passive congregation for embedded
applications’. Proc. VII Southern Conf. Programmable Logic (SPL),
April 2011, pp. 173-178

Anumandia Kiran, K., Peesapati, R., Sabat, S.L., Udgata, S.K.: ‘SoC
based floating point implementation of differential evolution algorithm
using FPGA’, Des. Autom. Embedded Syst., 2013, pp. 1-20, DOI 10.1007/
s10617-013-9107-4

Suganthan, P.N., Hansen, N., Liang, J.J., et al.: ‘Problem definitions and
evaluation criteria for the CEC 2005 special session on real-parameter
optimization’. Technical report, Nanyang Technological University,
Singapore, 2005

Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: ‘Benchmark
functions for the CEC’2010 special session and competition on
large-scale global optimization’. Technical report, University of
Science and Technology of China (USTC), School of Computer
Science and Technology, Nature Inspired Computation and
Applications Laboratory (NICAL): China, 2010

Xilinx: ‘Reference Guide UG200 — embedded processor block in
Virtex-5 FPGAs’. Technical report 10.1.3Xilinx, San Jose, California,
95124-3400, 2008

Mchenry, M.: ‘Spectrum white space measurements’. Technical report,
New America Foundation Broadband Forum, June 2003

Haykin, S.: ‘Cognitive radio: brain-empowered wireless
communications’, [EEE J. Sel. Areas Commun., 2005, 23, (2), pp.
201-220

Peng, C., Zheng, H., Zhao, B.Y.: ‘Utilization and fairness in spectrum
assignment for opportunistic spectrum access’, Mob. Netw. Appl.,
2006, 11, (4), pp. 555-576

IET Comput. Digit. Tech., 2013, Vol. 7, Iss. 5, pp. 221-234
doi: 10.1049/iet-cdt.2012.0109

